Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr(pi)/(6))sin(x)=?
Choose 1 answer:
(A) 
(1)/(2)
(B) 
(sqrt2)/(2)
(C) 
sqrt2
(D) The limit doesn't exist.

limxπ6sin(x)=? \lim _{x \rightarrow \frac{\pi}{6}} \sin (x)=? \newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 22 \frac{\sqrt{2}}{2} \newline(C) 2 \sqrt{2} \newline(D) The limit doesn't exist.

Full solution

Q. limxπ6sin(x)=? \lim _{x \rightarrow \frac{\pi}{6}} \sin (x)=? \newlineChoose 11 answer:\newline(A) 12 \frac{1}{2} \newline(B) 22 \frac{\sqrt{2}}{2} \newline(C) 2 \sqrt{2} \newline(D) The limit doesn't exist.
  1. Problem: We are asked to find the limit of the function sin(x)\sin(x) as xx approaches π6\frac{\pi}{6}. The sine function is continuous everywhere, so we can find this limit by direct substitution.
  2. Step 11: Substitute xx with π6\frac{\pi}{6} in the sine function: sin(π6)\sin\left(\frac{\pi}{6}\right).
  3. Step 22: Calculate the value of sin(π6)\sin(\frac{\pi}{6}). The sine of π6\frac{\pi}{6} is a well-known value, which is 12\frac{1}{2}.
  4. Step 33: Therefore, the limit of sin(x)\sin(x) as xx approaches π6\frac{\pi}{6} is 12\frac{1}{2}.

More problems from Domain and range of square root functions: equations