Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the following equation for 
y.

{:[sqrt(y^(2)+4)=sqrt(4y)],[y=]:}

Solve the following equation for y y .\newliney2+4=4yy= \begin{array}{l} \sqrt{y^{2}+4}=\sqrt{4 y} \\ y= \end{array}

Full solution

Q. Solve the following equation for y y .\newliney2+4=4yy= \begin{array}{l} \sqrt{y^{2}+4}=\sqrt{4 y} \\ y= \end{array}
  1. Write Equation: Write down the given equation.\newlineWe have the equation y2+4=4y\sqrt{y^2 + 4} = \sqrt{4y}.
  2. Square Both Sides: Square both sides of the equation to eliminate the square roots.\newline(y2+4)2=(4y)2(\sqrt{y^2 + 4})^2 = (\sqrt{4y})^2\newlineThis gives us y2+4=4yy^2 + 4 = 4y.
  3. Rearrange and Solve: Rearrange the equation to set it to zero and find the values of yy.y24y+4=0y^2 - 4y + 4 = 0
  4. Factor Quadratic Equation: Factor the quadratic equation. \newline(y2)2=0(y - 2)^2 = 0
  5. Solve for yy: Solve for yy by taking the square root of both sides.\newliney2=0y - 2 = 0\newlineSo, y=2y = 2.
  6. Check Solution: Check the solution in the original equation to ensure it does not produce any math errors.\newline22+4=4×2\sqrt{2^2 + 4} = \sqrt{4\times 2}\newline4+4=8\sqrt{4 + 4} = \sqrt{8}\newline8=8\sqrt{8} = \sqrt{8}\newlineThis is true, so y=2y = 2 is a valid solution.

More problems from Domain and range of square root functions: equations