Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(n)=sqrt(10 n)

g(n)=n^(2)-n
Evaluate.

(f@g)(10)=

f(n)=10n f(n)=\sqrt{10 n} \newlineg(n)=n2n g(n)=n^{2}-n \newlineEvaluate.\newline(fg)(10)= (f \circ g)(10)=

Full solution

Q. f(n)=10n f(n)=\sqrt{10 n} \newlineg(n)=n2n g(n)=n^{2}-n \newlineEvaluate.\newline(fg)(10)= (f \circ g)(10)=
  1. Understand Composition of Functions: Understand the composition of functions. The composition of two functions, fg)(n)meansthatwefirstapply$gf\circ g)(n)\, means that we first apply \$g to nn, and then apply ff to the result of g(n)g(n). So, fg)(10) meansweneedtofind$g(10)f\circ g)(10)\ means we need to find \$g(10) first and then apply ff to that result.
  2. Calculate g(10)g(10): Calculate g(10)g(10). We have g(n)=n2ng(n) = n^2 - n. So, g(10)=10210=10010=90g(10) = 10^2 - 10 = 100 - 10 = 90.
  3. Apply ff to g(10)g(10): Apply ff to the result of g(10)g(10). Now we need to apply ff to 9090, since we found that g(10)=90g(10) = 90. The function f(n)f(n) is defined as f(n)=10nf(n) = \sqrt{10n}. So, f(90)=10×90f(90) = \sqrt{10 \times 90}.
  4. Calculate f(90)f(90): Calculate f(90)f(90).f(90)=10×90=900=30f(90) = \sqrt{10 \times 90} = \sqrt{900} = 30.
  5. Conclude Final Answer: Conclude with the final answer.\newlineTherefore, the value of (f@g)(10)(f@g)(10) is 3030.

More problems from Domain and range of square root functions: equations