Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Quotient property of logarithms
log
2
(
x
3
16
)
\log_{2}\left(\frac{x^{3}}{16}\right)
lo
g
2
(
16
x
3
)
Get tutor help
log
4
(
1
2
)
=
\log_{4}\left(\frac{1}{2}\right)=
lo
g
4
(
2
1
)
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
6
(
−
8
x
6
)
y=\log _{6}\left(-8 x^{6}\right)
y
=
lo
g
6
(
−
8
x
6
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
2
(
−
5
x
4
)
y=\log _{2}\left(-5 x^{4}\right)
y
=
lo
g
2
(
−
5
x
4
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
6
(
6
x
6
)
y=\log _{6}\left(6 x^{6}\right)
y
=
lo
g
6
(
6
x
6
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
8
(
−
9
x
5
)
y=\log _{8}\left(-9 x^{5}\right)
y
=
lo
g
8
(
−
9
x
5
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
2
(
−
6
x
2
−
6
x
)
y=\log _{2}\left(-6 x^{2}-6 x\right)
y
=
lo
g
2
(
−
6
x
2
−
6
x
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
4
(
7
x
3
−
5
x
2
)
y=\log _{4}\left(7 x^{3}-5 x^{2}\right)
y
=
lo
g
4
(
7
x
3
−
5
x
2
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
7
(
9
x
6
)
y=\log _{7}\left(9 x^{6}\right)
y
=
lo
g
7
(
9
x
6
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
5
(
−
4
x
5
)
y=\log _{5}\left(-4 x^{5}\right)
y
=
lo
g
5
(
−
4
x
5
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
3
(
−
7
x
6
−
9
x
5
)
y=\log _{3}\left(-7 x^{6}-9 x^{5}\right)
y
=
lo
g
3
(
−
7
x
6
−
9
x
5
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
6
(
−
2
x
4
−
7
x
3
)
y=\log _{6}\left(-2 x^{4}-7 x^{3}\right)
y
=
lo
g
6
(
−
2
x
4
−
7
x
3
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
9
(
−
5
x
4
−
x
3
)
y=\log _{9}\left(-5 x^{4}-x^{3}\right)
y
=
lo
g
9
(
−
5
x
4
−
x
3
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
5
(
6
x
2
+
2
x
)
y=\log _{5}\left(6 x^{2}+2 x\right)
y
=
lo
g
5
(
6
x
2
+
2
x
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
6
(
−
6
x
5
−
6
x
4
)
y=\log _{6}\left(-6 x^{5}-6 x^{4}\right)
y
=
lo
g
6
(
−
6
x
5
−
6
x
4
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
5
(
4
x
5
−
9
x
4
)
y=\log _{5}\left(4 x^{5}-9 x^{4}\right)
y
=
lo
g
5
(
4
x
5
−
9
x
4
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
4
(
−
9
x
4
−
x
3
)
y=\log _{4}\left(-9 x^{4}-x^{3}\right)
y
=
lo
g
4
(
−
9
x
4
−
x
3
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
8
(
7
x
5
−
8
x
4
)
y=\log _{8}\left(7 x^{5}-8 x^{4}\right)
y
=
lo
g
8
(
7
x
5
−
8
x
4
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
log
9
(
−
6
x
6
−
6
x
5
)
y=\log _{9}\left(-6 x^{6}-6 x^{5}\right)
y
=
lo
g
9
(
−
6
x
6
−
6
x
5
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find
d
d
x
(
2
cos
6
x
)
\frac{d}{d x}(2 \cos 6 x)
d
x
d
(
2
cos
6
x
)
\newline
Answer:
Get tutor help
Expand the logarithm. Assume all expressions exist and are well-defined.
\newline
Write your answer as a sum or difference of common logarithms or multiples of common logarithms. The inside of each logarithm must be a distinct constant or variable.
\newline
log
(
z
x
y
)
\log\left(\frac{z}{xy}\right)
lo
g
(
x
y
z
)
\newline
______
Get tutor help
Previous
1
2
3