Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

log2(x316)\log_{2}\left(\frac{x^{3}}{16}\right)

Full solution

Q. log2(x316)\log_{2}\left(\frac{x^{3}}{16}\right)
  1. Apply Quotient Rule: Apply the quotient rule of logarithms to log2(x316)\log_2\left(\frac{x^3}{16}\right). The quotient rule of logarithms states that logb(ac)=logb(a)logb(c)\log_b\left(\frac{a}{c}\right) = \log_b(a) - \log_b(c). We can apply this rule to the given logarithm. log2(x316)=log2(x3)log2(16)\log_2\left(\frac{x^3}{16}\right) = \log_2(x^3) - \log_2(16)
  2. Simplify Log 1616: Simplify log2(16)\log_2(16) using the fact that 1616 is a power of 22.\newlineSince 1616 is 22 to the power of 44, we can write log2(16)\log_2(16) as log2(24)\log_2(2^4). According to the power rule of logarithms, logb(an)=nlogb(a)\log_b(a^n) = n \cdot \log_b(a), so log2(24)=4log2(2)\log_2(2^4) = 4 \cdot \log_2(2). Since 161600 is 161611, log2(16)\log_2(16) simplifies to 44.\newline161644
  3. Apply Power Rule: Apply the power rule of logarithms to log2(x3)\log_2(x^3). The power rule of logarithms states that logb(an)=nlogb(a)\log_b(a^n) = n \cdot \log_b(a). We can apply this rule to log2(x3)\log_2(x^3). log2(x3)=3log2(x)\log_2(x^3) = 3 \cdot \log_2(x)
  4. Combine Results: Combine the results from Step 22 and Step 33.\newlineWe have log2(x3)\log_2(x^3) as 3log2(x)3 \cdot \log_2(x) and log2(16)\log_2(16) as 44. Now we combine these results to get the final expanded form of the original logarithm.\newlinelog2(x316)=3log2(x)4\log_2\left(\frac{x^3}{16}\right) = 3 \cdot \log_2(x) - 4

More problems from Quotient property of logarithms