Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Grade 8
Write an equation word problem
{
f
(
1
)
=
15
f
(
n
)
=
f
(
n
−
1
)
⋅
n
f
(
2
)
=
□
\begin{array}{l}\left\{\begin{array}{l}f(1)=15 \\ f(n)=f(n-1) \cdot n\end{array}\right. \\ f(2)=\square\end{array}
{
f
(
1
)
=
15
f
(
n
)
=
f
(
n
−
1
)
⋅
n
f
(
2
)
=
□
Get tutor help
{
h
(
1
)
=
9
h
(
2
)
=
3
h
(
n
)
=
h
(
n
−
2
)
⋅
h
(
n
−
1
)
h
(
3
)
=
□
\begin{array}{l}\left\{\begin{array}{l}h(1)=9 \\ h(2)=3 \\ h(n)=h(n-2) \cdot h(n-1)\end{array}\right. \\ h(3)=\square\end{array}
⎩
⎨
⎧
h
(
1
)
=
9
h
(
2
)
=
3
h
(
n
)
=
h
(
n
−
2
)
⋅
h
(
n
−
1
)
h
(
3
)
=
□
Get tutor help
Rearrange the equation so
x
x
x
is the independent variable.
\newline
y
+
6
=
5
(
x
−
4
)
y
=
□
\begin{array}{l} y+6=5(x-4) \\ y=\square \end{array}
y
+
6
=
5
(
x
−
4
)
y
=
□
\newline
□
\square
□
Get tutor help
Determine the intercepts of the line. Do not round your answers.
−
4
x
+
7
y
=
3
-4x+7y=3
−
4
x
+
7
y
=
3
Get tutor help
\newline
2
3
x
−
4
3
y
=
8
A
(
3
x
−
1
)
=
3
y
\begin{array}{l} \frac{2}{3} x-\frac{4}{3} y=8 \\ A(3 x-1)=3 y \end{array}
3
2
x
−
3
4
y
=
8
A
(
3
x
−
1
)
=
3
y
\newline
In the system of equations,
A
A
A
is a constant. For which value of
A
A
A
is there exactly one solution
(
x
,
y
)
(x, y)
(
x
,
y
)
where
y
=
0
y=0
y
=
0
?
\newline
A)
2
2
2
\newline
B)
3
3
3
\newline
C)
4
4
4
\newline
D)
5
5
5
Get tutor help
−
6
x
+
4
y
=
2
3
x
−
2
y
=
−
1
\begin{aligned} -6 x+4 y & =2 \\ 3 x-2 y & =-1 \end{aligned}
−
6
x
+
4
y
3
x
−
2
y
=
2
=
−
1
\newline
Consider the system of equations. How many
(
x
,
y
)
(x, y)
(
x
,
y
)
solutions does this system have?
\newline
Choose
1
1
1
answer:
\newline
(A) No solutions
\newline
(B) Exactly one solution
\newline
(c) Exactly two solutions
\newline
(D) Infinitely many solutions
\newline
Get tutor help
Solve the system of equations by substitution or elimination.
\newline
4
x
−
y
=
10
4x-y=10
4
x
−
y
=
10
\newline
3
x
+
5
y
=
19
3x+5y=19
3
x
+
5
y
=
19
Get tutor help
Solve system of equations:
\newline
2
x
+
5
y
=
−
11
2x+5y=-11
2
x
+
5
y
=
−
11
\newline
−
8
x
−
5
y
=
−
1
-8x-5y=-1
−
8
x
−
5
y
=
−
1
Get tutor help
4
x
2
+
x
−
29
=
y
4x^2 + x - 29 = y
4
x
2
+
x
−
29
=
y
\newline
x
−
4
=
y
x - 4 = y
x
−
4
=
y
\newline
If
(
x
,
y
)
(x,y)
(
x
,
y
)
is a solution to the system of equations shown and
x
>
0
x > 0
x
>
0
, what is the value of
x
x
x
?
Get tutor help
What is
(
q
∗
c
)
(
x
)
?
(q*c)(x) ?
(
q
∗
c
)
(
x
)?
\newline
q
(
x
)
=
2
(
x
)
q(x) = 2(x)
q
(
x
)
=
2
(
x
)
\newline
c
(
x
)
=
−
2
x
2
+
9
x
c(x) = -2x^2+ 9x
c
(
x
)
=
−
2
x
2
+
9
x
\newline
Write your answer as a polynomial or a rational function.
\newline
□
\square
□
Get tutor help
Solve the following system of equations.
\newline
8
x
−
5
y
=
25
8x-5y=25
8
x
−
5
y
=
25
\newline
−
2
x
+
7
y
=
11
-2x+7y=11
−
2
x
+
7
y
=
11
\newline
x
=
x =
x
=
□
\square
□
\newline
y
=
y =
y
=
□
\square
□
Get tutor help
Solve for
h
h
h
.
\newline
h
+
3
h
+
5
h
+
3
h
−
12
=
48
h+3h+5h+3h-12=48
h
+
3
h
+
5
h
+
3
h
−
12
=
48
\newline
h
=
□
h=\square
h
=
□
Get tutor help
Determine whether
(
2
,
1
,
8
)
(2,1,8)
(
2
,
1
,
8
)
is a solution to the system.
\newline
4
x
−
4
y
−
5
z
=
−
36
2
x
−
5
y
+
5
z
=
39
−
14
x
−
3
y
+
10
z
=
49
\begin{array}{rr} 4 x-4 y-5 z= & -36 \\ 2 x-5 y+5 z= & 39 \\ -14 x-3 y+10 z= & 49 \end{array}
4
x
−
4
y
−
5
z
=
2
x
−
5
y
+
5
z
=
−
14
x
−
3
y
+
10
z
=
−
36
39
49
Get tutor help
Find the solution to the system by the substitution method. Check your answers.
\newline
5
x
+
8
y
=
10
x
+
2
y
=
−
2
\begin{aligned} 5 x+8 y & =10 \\ x+2 y & =-2 \end{aligned}
5
x
+
8
y
x
+
2
y
=
10
=
−
2
Get tutor help
x
1
+
x
2
+
2
x
3
=
−
1
x_{1}+x_{2}+2x_{3}=-1
x
1
+
x
2
+
2
x
3
=
−
1
\newline
x
1
−
2
x
2
+
x
3
=
−
5
x_{1}-2x_{2}+x_{3}=-5
x
1
−
2
x
2
+
x
3
=
−
5
\newline
3
x
1
+
x
2
+
x
3
=
3
3x_{1}+x_{2}+x_{3}=3
3
x
1
+
x
2
+
x
3
=
3
\newline
find all solutions by using the Gaussian elimination or Gauss-Jordan Reduction.
Get tutor help
x
1
+
x
2
+
2
x
3
=
−
1
x
1
−
2
x
2
+
x
3
=
−
5
3
x
1
+
x
2
+
x
3
=
3
\begin{array}{l} x_{1}+x_{2}+2 x_{3}=-1 \\ x_{1}-2 x_{2}+x_{3}=-5 \\ 3 x_{1}+x_{2}+x_{3}=3 \end{array}
x
1
+
x
2
+
2
x
3
=
−
1
x
1
−
2
x
2
+
x
3
=
−
5
3
x
1
+
x
2
+
x
3
=
3
\newline
a)Find all solutions using Gaussian elimination or Gauss-Jordan reduction.
Get tutor help
Solve the system of equations.
\newline
6
x
−
5
y
=
15
x
=
y
+
3
x
=
y
=
\begin{array}{l} 6 x-5 y=15 \\ x=y+3 \\ x= \\ y= \end{array}
6
x
−
5
y
=
15
x
=
y
+
3
x
=
y
=
Get tutor help
Determine whether
(
8
,
9
,
9
)
(8,9,9)
(
8
,
9
,
9
)
is a solution to the system.
\newline
−
2
x
+
3
y
+
4
z
=
47
−
5
x
+
4
y
−
4
z
=
−
40
11
x
+
2
y
−
8
z
=
34
\begin{array}{rr} -2 x+3 y+4 z= & 47 \\ -5 x+4 y-4 z= & -40 \\ 11 x+2 y-8 z= & 34 \end{array}
−
2
x
+
3
y
+
4
z
=
−
5
x
+
4
y
−
4
z
=
11
x
+
2
y
−
8
z
=
47
−
40
34
Get tutor help
Find the solution to the system by the substitution method. Check your answers.
\newline
3
x
+
4
y
=
10
x
+
2
y
=
−
2
\begin{array}{r} 3 x+4 y=10 \\ x+2 y=-2 \end{array}
3
x
+
4
y
=
10
x
+
2
y
=
−
2
Get tutor help
3
x
−
4
y
=
10
2
x
−
4
y
=
6
\begin{array}{l} 3 x-4 y=10 \\ 2 x-4 y=6 \end{array}
3
x
−
4
y
=
10
2
x
−
4
y
=
6
\newline
If
(
x
,
y
)
(x, y)
(
x
,
y
)
satisfies the given system of equations, what is the value of
y
y
y
?
Get tutor help
3
x
+
2
y
=
8
2
x
−
y
=
3
\begin{array}{c} 3 x+2 y=8 \\ 2 x-y=3 \end{array}
3
x
+
2
y
=
8
2
x
−
y
=
3
\newline
What is the solution
(
x
,
y
)
(x, y)
(
x
,
y
)
to the given system of equations?
\newline
A)
(
3
,
2
)
(3,2)
(
3
,
2
)
\newline
B)
(
2
,
3
)
(2,3)
(
2
,
3
)
\newline
C)
(
1
,
2
)
(1,2)
(
1
,
2
)
\newline
D)
(
2
,
1
)
(2,1)
(
2
,
1
)
Get tutor help
k
×
34
=
6.29
k\times 34=6.29
k
×
34
=
6.29
\newline
k
=
□
k=\square
k
=
□
Get tutor help
Solve for
m
\mathrm{m}
m
and write your result in the empty box provided below.
\newline
−
20
+
14
m
=
10
m
+
16
m
=
□
\begin{array}{l} -20+14 \mathrm{~m}=10 \mathrm{~m}+16 \\ \mathrm{~m}=\square \end{array}
−
20
+
14
m
=
10
m
+
16
m
=
□
Get tutor help
Consider the following system of equations,
\newline
−
2
x
−
9
y
=
12
−
2
x
−
7
y
=
8
\begin{aligned} -2 x-9 y & =12 \\ -2 x-7 y & =8 \end{aligned}
−
2
x
−
9
y
−
2
x
−
7
y
=
12
=
8
Get tutor help
Solve for
s
s
s
.
\newline
6
s
=
99.42
s
=
\begin{array}{l} 6 s=99.42 \\ s= \end{array}
6
s
=
99.42
s
=
\newline
Get tutor help
Solve for
s
s
s
.
\newline
6
s
=
99.42
6s=99.42
6
s
=
99.42
.
\newline
s
=
s =
s
=
□
\square
□
Get tutor help
Complete the equations.
\newline
6
×
□
=
600
6\times\square=600
6
×
□
=
600
,
\newline
6
×
□
=
6
,
000
6\times\square=6,000
6
×
□
=
6
,
000
.
Get tutor help
Simplify the expression:
\newline
3
a
+
5
u
=
17
3a+5u = 17
3
a
+
5
u
=
17
,
\newline
2
a
+
u
=
9
2a+u=9
2
a
+
u
=
9
Get tutor help
{
f
(
1
)
=
−
2
,
f
(
2
)
=
5
,
f
(
n
)
=
f
(
n
−
2
)
⋅
f
(
n
−
1
)
\begin{cases} f(1) = -2, \ f(2) = 5, \ f(n) = f(n-2) \cdot f(n-1) \end{cases}
{
f
(
1
)
=
−
2
,
f
(
2
)
=
5
,
f
(
n
)
=
f
(
n
−
2
)
⋅
f
(
n
−
1
)
,
f
(
3
)
=
0
f(3) = \boxed{\phantom{0}}
f
(
3
)
=
0
Get tutor help
x
1
+
x
2
+
2
x
3
=
−
1
x_{1}+x_{2}+2x_{3}=-1
x
1
+
x
2
+
2
x
3
=
−
1
\newline
x
1
−
2
x
2
+
x
3
=
−
5
x_{1}-2x_{2}+x_{3}=-5
x
1
−
2
x
2
+
x
3
=
−
5
\newline
3
x
1
+
x
2
+
x
3
=
3
3x_{1}+x_{2}+x_{3}=3
3
x
1
+
x
2
+
x
3
=
3
\newline
Find all solutions by using the Gaussian elimination & Gauss-Jordan Reduction.
Get tutor help
x
1
+
x
2
+
2
x
3
=
−
1
x
1
−
2
x
2
+
x
3
=
−
5
3
x
1
+
x
2
+
x
3
=
3
\begin{array}{l} x_{1}+x_{2}+2 x_{3}=-1 \\ x_{1}-2 x_{2}+x_{3}=-5 \\ 3 x_{1}+x_{2}+x_{3}=3 \end{array}
x
1
+
x
2
+
2
x
3
=
−
1
x
1
−
2
x
2
+
x
3
=
−
5
3
x
1
+
x
2
+
x
3
=
3
\newline
Find all solutions by waing the Gausionan
\newline
elimination& Gaus-Jordan
Get tutor help
Use substitution to solve equations:
\newline
y
=
5
x
+
1
y=5x+1
y
=
5
x
+
1
\newline
4
x
+
y
=
10
4x+y=10
4
x
+
y
=
10
Get tutor help
9
x
+
4
y
<
8
−
3
x
−
7
y
≥
5
\begin{array}{l} 9 x+4 y<8 \\ -3 x-7 y \geq 5 \end{array}
9
x
+
4
y
<
8
−
3
x
−
7
y
≥
5
\newline
Is
(
1
,
−
2
)
(1,-2)
(
1
,
−
2
)
a solution of the system?
Get tutor help
Solve for
c
c
c
.
\newline
c
−
−
488
=
742
c--488=742
c
−
−
488
=
742
\newline
c
=
c=
c
=
□
\square
□
Get tutor help
A systern of equations is shown
\newline
2
x
+
2
y
=
17
2x+2y=17
2
x
+
2
y
=
17
\newline
4
x
−
y
=
25
4x-y=25
4
x
−
y
=
25
\newline
Enter your answer in the box.
\newline
□
\square
□
,
□
\square
□
Get tutor help
Solve for
u
u
u
.
\newline
(
u
−
63
6
)
=
5
\left(\frac{u-63}{6}\right)=5
(
6
u
−
63
)
=
5
,
\newline
u
=
□
u=\square
u
=
□
\newline
Get tutor help
8
x
−
y
=
12
8x-y=12
8
x
−
y
=
12
\newline
2
x
−
6
y
=
3
2x-6y=3
2
x
−
6
y
=
3
\newline
Consider the system of equations. If
(
x
,
y
)
(x,y)
(
x
,
y
)
is the solution to the system, then what is the value of
x
+
y
x+y
x
+
y
?
\newline
□
\square
□
Get tutor help
7
x
+
10
y
=
60
7x+10y=60
7
x
+
10
y
=
60
\newline
7
x
−
2
y
=
240
7x-2y=240
7
x
−
2
y
=
240
\newline
If
(
x
,
y
)
(x,y)
(
x
,
y
)
satisfies the given system of equations, what is the value of
x
x
x
?
\newline
◻
Get tutor help
w
x
+
2
y
=
3
(
1
+
y
)
+
1
\ w x + 2 y= 3 (1 + y) + 1
w
x
+
2
y
=
3
(
1
+
y
)
+
1
\newline
8
−
y
=
2
(
1
−
y
)
+
3
x
\ 8 - y = 2 (1 - y) + 3 x
8
−
y
=
2
(
1
−
y
)
+
3
x
\newline
In the system of equations,
w
w
w
is a constant. For what value of
w
w
w
will the system of equations have exactly one solution
(
x
,
y
)
(x,y)
(
x
,
y
)
with
x
=
1
x=1
x
=
1
?
\newline
□
\square
□
Get tutor help
Solve the equation
\newline
(
2
sin
x
−
1
)
(
2
cos
x
+
1
)
=
0
(2\sin x-1)(2\cos x+1)=0
(
2
sin
x
−
1
)
(
2
cos
x
+
1
)
=
0
within the interval
−
180
≤
x
≤
180
-180 \leq x \leq 180
−
180
≤
x
≤
180
,
Get tutor help
Find the solution of the system of equations.
\newline
−
3
x
−
8
y
=
−
25
6
x
+
8
y
=
10
\begin{aligned} -3 x-8 y & =-25 \\ 6 x+8 y & =10 \end{aligned}
−
3
x
−
8
y
6
x
+
8
y
=
−
25
=
10
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
−
3
x
+
4
y
=
−
7
3
x
+
6
y
=
27
\begin{aligned} -3 x+4 y & =-7 \\ 3 x+6 y & =27 \end{aligned}
−
3
x
+
4
y
3
x
+
6
y
=
−
7
=
27
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
2
x
+
3
y
=
19
2
x
−
6
y
=
−
44
\begin{array}{l} 2 x+3 y=19 \\ 2 x-6 y=-44 \end{array}
2
x
+
3
y
=
19
2
x
−
6
y
=
−
44
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
9
x
+
4
y
=
47
−
9
x
−
y
=
−
32
\begin{array}{l} 9 x+4 y=47 \\ -9 x-y=-32 \end{array}
9
x
+
4
y
=
47
−
9
x
−
y
=
−
32
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
9
x
+
y
=
−
12
7
x
+
y
=
−
10
\begin{array}{l} 9 x+y=-12 \\ 7 x+y=-10 \end{array}
9
x
+
y
=
−
12
7
x
+
y
=
−
10
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
3
x
−
6
y
=
−
45
x
−
6
y
=
−
47
\begin{array}{r} 3 x-6 y=-45 \\ x-6 y=-47 \end{array}
3
x
−
6
y
=
−
45
x
−
6
y
=
−
47
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
x
+
3
y
=
13
−
x
+
2
y
=
12
\begin{aligned} x+3 y & =13 \\ -x+2 y & =12 \end{aligned}
x
+
3
y
−
x
+
2
y
=
13
=
12
\newline
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
−
4
x
−
2
y
=
−
30
−
4
x
−
7
y
=
−
25
\begin{array}{l} -4 x-2 y=-30 \\ -4 x-7 y=-25 \end{array}
−
4
x
−
2
y
=
−
30
−
4
x
−
7
y
=
−
25
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
x
−
8
y
=
16
−
x
−
10
y
=
2
\begin{aligned} x-8 y & =16 \\ -x-10 y & =2 \end{aligned}
x
−
8
y
−
x
−
10
y
=
16
=
2
\newline
(_________,________)
Get tutor help
Find the solution of the system of equations.
\newline
8
x
−
5
y
=
−
14
−
8
x
+
y
=
22
\begin{array}{l} 8 x-5 y=-14 \\ -8 x+y=22 \end{array}
8
x
−
5
y
=
−
14
−
8
x
+
y
=
22
\newline
(_________,________)
Get tutor help
1
2
3
...
5
Next