Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x1+x2+2x3=1x_{1}+x_{2}+2x_{3}=-1\newlinex12x2+x3=5x_{1}-2x_{2}+x_{3}=-5\newline3x1+x2+x3=33x_{1}+x_{2}+x_{3}=3\newline find all solutions by using the Gaussian elimination or Gauss-Jordan Reduction.

Full solution

Q. x1+x2+2x3=1x_{1}+x_{2}+2x_{3}=-1\newlinex12x2+x3=5x_{1}-2x_{2}+x_{3}=-5\newline3x1+x2+x3=33x_{1}+x_{2}+x_{3}=3\newline find all solutions by using the Gaussian elimination or Gauss-Jordan Reduction.
  1. Write Augmented Matrix: Write the augmented matrix for the system of equations.\newline[1amp;1amp;2amp;amp;11amp;2amp;1amp;amp;53amp;1amp;1amp;amp;3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 1 & -2 & 1 & | & -5 \\ 3 & 1 & 1 & | & 3 \end{bmatrix}
  2. Leading 11 in R11: Perform row operations to get a leading 11 in the first row, first column (R1R1).\newlineNo changes needed as the first element is already 11.
  3. Zeros in First Column: Make zeros below the leading 11 in the first column using R22 - R11 → R22 and R33 - 33R11 → R33.\newline[1amp;1amp;2amp;amp;10amp;3amp;1amp;amp;40amp;2amp;5amp;amp;6] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -3 & -1 & | & -4 \\ 0 & -2 & -5 & | & 6 \end{bmatrix}
  4. Leading 11 in R22: Make the second column's second row element into a leading 11 by multiplying R22 by 1-1/33.\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;2amp;5amp;amp;6] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & -2 & -5 & | & 6 \end{bmatrix}
  5. Eliminate First Column: Eliminate the first column's second row element by adding R22 to R11 and add 22R22 to R33.\newline[1amp;0amp;7/3amp;amp;1/30amp;1amp;1/3amp;amp;4/30amp;0amp;13/3amp;amp;14/3] \begin{bmatrix} 1 & 0 & 7/3 & | & 1/3 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & -13/3 & | & 14/3 \end{bmatrix}
  6. Leading 11 in R33: Convert the third row's third column element to a leading 11 by multiplying R33 by 3-3/1313.\newline[1amp;0amp;7/3amp;amp;1/30amp;1amp;1/3amp;amp;4/30amp;0amp;1amp;amp;14/13] \begin{bmatrix} 1 & 0 & 7/3 & | & 1/3 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & 1 & | & -14/13 \end{bmatrix}
  7. Eliminate Third Column: Eliminate the third column's first and second row elements by subtracting (77/33)R33 from R11 and subtracting (11/33)R33 from R22.\newline[1amp;0amp;0amp;amp;29/390amp;1amp;0amp;amp;50/390amp;0amp;1amp;amp;14/13] \begin{bmatrix} 1 & 0 & 0 & | & 29/39 \\ 0 & 1 & 0 & | & 50/39 \\ 0 & 0 & 1 & | & -14/13 \end{bmatrix}
  8. Check Solution: Check the solution by substituting back into the original equations.\newlineSubstituting x1=29/39,x2=50/39,x3=14/13 x_1 = 29/39, x_2 = 50/39, x_3 = -14/13 into the original equations confirms the solution is correct.