Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Solve the following system of equations.

{:[8x-5y=25],[-2x+7y=11]:}

{:[x=],[y=]:}

Solve the following system of equations. \newline8x5y=258x-5y=25\newline 2x+7y=11-2x+7y=11\newlinex=x = \square\newliney=y = \square

Full solution

Q. Solve the following system of equations. \newline8x5y=258x-5y=25\newline 2x+7y=11-2x+7y=11\newlinex=x = \square\newliney=y = \square
  1. Set up equations: Step 11: Set up the equations for elimination.\newlineGiven equations:\newline11) 8x5y=258x - 5y = 25\newline22) 2x+7y=11-2x + 7y = 11\newlineWe aim to eliminate one variable by making the coefficients of xx or yy equal in both equations.
  2. Multiply second equation: Step 22: Multiply the second equation by 44 to align the coefficients of xx.\newlineOriginal second equation: 2x+7y=11-2x + 7y = 11\newlineMultiply by 44: 8x+28y=44-8x + 28y = 44\newlineNow, the equations are:\newline11) 8x5y=258x - 5y = 25\newline22) 8x+28y=44-8x + 28y = 44
  3. Add equations to eliminate x: Step 33: Add the two equations to eliminate x.\newline(8x5y)+(8x+28y)=25+44(8x - 5y) + (-8x + 28y) = 25 + 44\newline0x+23y=690x + 23y = 69\newlineSimplify: y=6923y = \frac{69}{23}\newliney=3y = 3
  4. Substitute to find xx: Step 44: Substitute y=3y = 3 back into one of the original equations to find xx. Using the first equation: 8x5y=258x - 5y = 25 Substitute yy: 8x5(3)=258x - 5(3) = 25 8x15=258x - 15 = 25 8x=25+158x = 25 + 15 8x=408x = 40 x=40/8x = 40 / 8 y=3y = 300