Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether 
(2,1,8) is a solution to the system.

{:[4x-4y-5z=,-36],[2x-5y+5z=,39],[-14 x-3y+10 z=,49]:}

Determine whether (2,1,8) (2,1,8) is a solution to the system.\newline4x4y5z=amp;362x5y+5z=amp;3914x3y+10z=amp;49 \begin{array}{rr} 4 x-4 y-5 z= & -36 \\ 2 x-5 y+5 z= & 39 \\ -14 x-3 y+10 z= & 49 \end{array}

Full solution

Q. Determine whether (2,1,8) (2,1,8) is a solution to the system.\newline4x4y5z=362x5y+5z=3914x3y+10z=49 \begin{array}{rr} 4 x-4 y-5 z= & -36 \\ 2 x-5 y+5 z= & 39 \\ -14 x-3 y+10 z= & 49 \end{array}
  1. Substitute Equations: Step 11: Substitute x=2x=2, y=1y=1, z=8z=8 into the first equation 4x4y5z=364x - 4y - 5z = -36.\newlineCalculation: 4(2)4(1)5(8)=8440=364(2) - 4(1) - 5(8) = 8 - 4 - 40 = -36.
  2. Calculate First Equation: Step 22: Substitute x=2x=2, y=1y=1, z=8z=8 into the second equation 2x5y+5z=392x - 5y + 5z = 39.\newlineCalculation: 2(2)5(1)+5(8)=45+40=392(2) - 5(1) + 5(8) = 4 - 5 + 40 = 39.
  3. Calculate Second Equation: Step 33: Substitute x=2x=2, y=1y=1, z=8z=8 into the third equation 14x3y+10z=49-14x - 3y + 10z = 49.\newlineCalculation: 14(2)3(1)+10(8)=283+80=49-14(2) - 3(1) + 10(8) = -28 - 3 + 80 = 49.