Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A systern of equations is shown \newline 2x+2y=172x+2y=17 \newline4xy=254x-y=25 \newlineEnter your answer in the box. \newline\square,\square

Full solution

Q. A systern of equations is shown \newline 2x+2y=172x+2y=17 \newline4xy=254x-y=25 \newlineEnter your answer in the box. \newline\square,\square
  1. Write Equations: Step 11: Write down the system of equations.\newlineEquation 1: 2x+2y=17 \text{Equation 1: } 2x + 2y = 17 \newlineEquation 2: 4xy=25 \text{Equation 2: } 4x - y = 25
  2. Simplify Equation 11: Step 22: Simplify Equation 11 by dividing all terms by 22.\newlinex+y=172 x + y = \frac{17}{2}
  3. Solve for y: Step 33: Solve for y from Equation 22.\newliney=4x25 y = 4x - 25
  4. Substitute and Simplify: Step 44: Substitute y from Equation 33 into the simplified Equation 11.\newlinex+(4x25)=172 x + (4x - 25) = \frac{17}{2} \newline5x25=172 5x - 25 = \frac{17}{2}
  5. Solve for x: Step 55: Solve for x.\newline5x=172+25 5x = \frac{17}{2} + 25 \newline5x=172+502 5x = \frac{17}{2} + \frac{50}{2} \newline5x=672 5x = \frac{67}{2} \newlinex=6710 x = \frac{67}{10}
  6. Substitute for y: Step 66: Substitute x back into Equation 33 to find y.\newliney=4(6710)25 y = 4(\frac{67}{10}) - 25 \newliney=2681025 y = \frac{268}{10} - 25 \newliney=26.825 y = 26.8 - 25 \newliney=1.8 y = 1.8