Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[x_(1)+x_(2)+2x_(3)=-1],[x_(1)-2x_(2)+x_(3)=-5],[3x_(1)+x_(2)+x_(3)=3]:}
Find all solutions by waing the Gausionan
elimination?&Gaus-Jordan

x1+x2+2x3=1x12x2+x3=53x1+x2+x3=3 \begin{array}{l} x_{1}+x_{2}+2 x_{3}=-1 \\ x_{1}-2 x_{2}+x_{3}=-5 \\ 3 x_{1}+x_{2}+x_{3}=3 \end{array} \newlineFind all solutions by waing the Gausionan\newlineelimination& Gaus-Jordan

Full solution

Q. x1+x2+2x3=1x12x2+x3=53x1+x2+x3=3 \begin{array}{l} x_{1}+x_{2}+2 x_{3}=-1 \\ x_{1}-2 x_{2}+x_{3}=-5 \\ 3 x_{1}+x_{2}+x_{3}=3 \end{array} \newlineFind all solutions by waing the Gausionan\newlineelimination& Gaus-Jordan
  1. Write Augmented Matrix: Write down the augmented matrix for the system of equations.\newline[1amp;1amp;2amp;amp;11amp;2amp;1amp;amp;53amp;1amp;1amp;amp;3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 1 & -2 & 1 & | & -5 \\ 3 & 1 & 1 & | & 3 \end{bmatrix}
  2. Perform Row Operations: Perform the first row operation: R22 = R22 - R11.\newline[1amp;1amp;2amp;amp;10amp;3amp;1amp;amp;43amp;1amp;1amp;amp;3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -3 & -1 & | & -4 \\ 3 & 1 & 1 & | & 3 \end{bmatrix}
  3. Divide Second Row: Perform the second row operation: R33 = R33 - 33R11.\newline[1amp;1amp;2amp;amp;10amp;3amp;1amp;amp;40amp;2amp;5amp;amp;6] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -3 & -1 & | & -4 \\ 0 & -2 & -5 & | & 6 \end{bmatrix}
  4. Perform Third Row Operation: Divide the second row by 3-3 to make the leading coefficient 11.\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;2amp;5amp;amp;6] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & -2 & -5 & | & 6 \end{bmatrix}
  5. Divide Third Row: Perform the third row operation: R33 = R33 + 22R22.\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;0amp;13/3amp;amp;22/3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & -13/3 & | & 22/3 \end{bmatrix}
  6. Perform Back Substitution: Divide the third row by 13-13/33 to make the leading coefficient 11.\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;0amp;1amp;amp;2] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}
  7. Perform Back Substitution: Divide the third row by 13-13/33 to make the leading coefficient 11.\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;0amp;1amp;amp;2] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & 1 & | & -2 \end{bmatrix} Perform back substitution starting from the third row.\newlineSolve for x3x_3: x3=2x_3 = -2.\newlineThen, substitute x3x_3 into the second row equation to solve for x2x_2: x2+1/3(2)=4/3x_2 + 1/3(-2) = 4/3, which simplifies to x2=2x_2 = 2.\newlineFinally, substitute x2x_2 and x3x_3 into the first row equation to solve for x1x_1: x1+2+2(2)=1x_1 + 2 + 2(-2) = -1, which simplifies to x3=2x_3 = -200.