Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Determine whether 
(8,9,9) is a solution to the system.

{:[-2x+3y+4z=,47],[-5x+4y-4z=,-40],[11 x+2y-8z=,34]:}

Determine whether (8,9,9) (8,9,9) is a solution to the system.\newline2x+3y+4z=amp;475x+4y4z=amp;4011x+2y8z=amp;34 \begin{array}{rr} -2 x+3 y+4 z= & 47 \\ -5 x+4 y-4 z= & -40 \\ 11 x+2 y-8 z= & 34 \end{array}

Full solution

Q. Determine whether (8,9,9) (8,9,9) is a solution to the system.\newline2x+3y+4z=475x+4y4z=4011x+2y8z=34 \begin{array}{rr} -2 x+3 y+4 z= & 47 \\ -5 x+4 y-4 z= & -40 \\ 11 x+2 y-8 z= & 34 \end{array}
  1. Substitute values into first equation: Step 11: Substitute x=8x=8, y=9y=9, z=9z=9 into the first equation 2x+3y+4z=47-2x + 3y + 4z = 47.\newlineCalculation: 2(8)+3(9)+4(9)=16+27+36=47-2(8) + 3(9) + 4(9) = -16 + 27 + 36 = 47.
  2. Substitute values into second equation: Step 22: Substitute x=8x=8, y=9y=9, z=9z=9 into the second equation 5x+4y4z=40-5x + 4y - 4z = -40.\newlineCalculation: 5(8)+4(9)4(9)=40+3636=40-5(8) + 4(9) - 4(9) = -40 + 36 - 36 = -40.
  3. Substitute values into third equation: Step 33: Substitute x=8x=8, y=9y=9, z=9z=9 into the third equation 11x+2y8z=3411x + 2y - 8z = 34.\newlineCalculation: 11(8)+2(9)8(9)=88+1872=3411(8) + 2(9) - 8(9) = 88 + 18 - 72 = 34.