Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Simplify:
\newline
(
−
4
p
3
)
3
(-4p^{3})^{3}
(
−
4
p
3
)
3
View step-by-step help
Home
Math Problems
Algebra 2
Add, subtract, multiply, and divide polynomials
Full solution
Q.
Simplify:
\newline
(
−
4
p
3
)
3
(-4p^{3})^{3}
(
−
4
p
3
)
3
Recognize and Apply Power Rule:
Step
1
1
1
: Recognize the expression and apply the power rule for exponents.
(
−
4
p
3
)
3
=
(
−
4
)
3
×
(
p
3
)
3
(-4p^{3})^{3} = (-4)^{3} \times (p^{3})^{3}
(
−
4
p
3
)
3
=
(
−
4
)
3
×
(
p
3
)
3
Calculate Cube of
−
4
-4
−
4
:
Step
2
2
2
: Calculate the cube of
−
4
-4
−
4
.
(
−
4
)
3
=
−
64
(-4)^3 = -64
(
−
4
)
3
=
−
64
Apply Power Rule to
(
p
3
)
3
(p^3)^3
(
p
3
)
3
:
Step
3
3
3
: Apply the power rule to
(
p
3
)
3
(p^3)^3
(
p
3
)
3
.
(
p
3
)
3
=
p
(
3
∗
3
)
=
p
9
(p^3)^3 = p^{(3*3)} = p^9
(
p
3
)
3
=
p
(
3
∗
3
)
=
p
9
Combine Results:
Step
4
4
4
: Combine the results from Step
2
2
2
and Step
3
3
3
.
\newline
−
64
×
p
9
=
−
64
p
9
-64 \times p^9 = -64p^9
−
64
×
p
9
=
−
64
p
9
More problems from Add, subtract, multiply, and divide polynomials
Question
Find the solutions of the quadratic equation
2
x
2
−
8
x
−
9
=
0
2 x^{2}-8 x-9=0
2
x
2
−
8
x
−
9
=
0
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
±
34
2
i
2 \pm \frac{\sqrt{34}}{2} i
2
±
2
34
i
\newline
(B)
−
2
±
34
2
i
-2 \pm \frac{\sqrt{34}}{2} i
−
2
±
2
34
i
\newline
(C)
2
±
34
2
2 \pm \frac{\sqrt{34}}{2}
2
±
2
34
\newline
(D)
1
±
34
4
1 \pm \frac{\sqrt{34}}{4}
1
±
4
34
Get tutor help
Posted 1 year ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
−
5
x
+
4
)
(
x
−
3
)
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} (-5 x+4)(x-3)=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
(
−
5
x
+
4
)
(
x
−
3
)
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Posted 1 year ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
2
x
+
4
)
(
3
x
−
2
)
=
0
(2 x+4)(3 x-2)=0
(
2
x
+
4
)
(
3
x
−
2
)
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Posted 1 year ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
3
x
−
6
)
(
−
x
+
3
)
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} (3 x-6)(-x+3)=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
(
3
x
−
6
)
(
−
x
+
3
)
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Posted 1 year ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
x
+
6
)
(
−
x
+
1
)
=
0
(x+6)(-x+1)=0
(
x
+
6
)
(
−
x
+
1
)
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Posted 1 year ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
3
x
2
+
2
f(x)=\frac{3}{x^{2}+2}
f
(
x
)
=
x
2
+
2
3
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 1 year ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
1
4
−
x
2
f(x)=\frac{1}{4-x^{2}}
f
(
x
)
=
4
−
x
2
1
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 1 year ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
2
∣
x
∣
−
5
f(x)=2|x|-5
f
(
x
)
=
2∣
x
∣
−
5
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 1 year ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
x
x
2
+
1
f(x)=\frac{x}{x^{2}+1}
f
(
x
)
=
x
2
+
1
x
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 1 year ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
x
3
−
4
x
f(x)=x^{3}-4 x
f
(
x
)
=
x
3
−
4
x
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant