Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=(1)/(4-x^(2))
Choose 1 answer:
(A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=14x2 f(x)=\frac{1}{4-x^{2}} \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=14x2 f(x)=\frac{1}{4-x^{2}} \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Define function and find f(-x): Define the function f(x) and find f(-x).\newlineThe function given is f(x)=14x2f(x)=\frac{1}{4-x^{2}}. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x).\newlineSubstitute x-x for xx in f(x)f(x) to get f(x)f(-x).\newlinef(x)=14(x)2f(-x)=\frac{1}{4-(-x)^{2}}
  2. Simplify f(x)f(-x): Simplify f(x)f(-x).\newlineSimplify the expression inside the parentheses.\newlinef(x)=14((x)2)f(-x)=\frac{1}{4-((-x)^2)}\newlineSince (x)2=x2(-x)^2 = x^2, we have:\newlinef(x)=14x2f(-x)=\frac{1}{4-x^2}
  3. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x).\newlineWe have f(x)=14x2f(x)=\frac{1}{4-x^2} and f(x)=14(x)2f(-x)=\frac{1}{4-(-x)^2}.\newlineSince f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions