Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the solutions of the quadratic equation 
2x^(2)-8x-9=0.
Choose 1 answer:
(A) 
2+-(sqrt34)/(2)i
(B) 
-2+-(sqrt34)/(2)i
(C) 
2+-(sqrt34)/(2)
(D) 
1+-(sqrt34)/(4)

Find the solutions of the quadratic equation 2x28x9=0 2 x^{2}-8 x-9=0 .\newlineChoose 11 answer:\newline(A) 2±342i 2 \pm \frac{\sqrt{34}}{2} i \newline(B) 2±342i -2 \pm \frac{\sqrt{34}}{2} i \newline(C) 2±342 2 \pm \frac{\sqrt{34}}{2} \newline(D) 1±344 1 \pm \frac{\sqrt{34}}{4}

Full solution

Q. Find the solutions of the quadratic equation 2x28x9=0 2 x^{2}-8 x-9=0 .\newlineChoose 11 answer:\newline(A) 2±342i 2 \pm \frac{\sqrt{34}}{2} i \newline(B) 2±342i -2 \pm \frac{\sqrt{34}}{2} i \newline(C) 2±342 2 \pm \frac{\sqrt{34}}{2} \newline(D) 1±344 1 \pm \frac{\sqrt{34}}{4}
  1. Identify coefficients: Identify the coefficients of the quadratic equation 2x28x9=02x^2 - 8x - 9 = 0.\newlineThe standard form of a quadratic equation is ax2+bx+c=0ax^2 + bx + c = 0. Here, a=2a = 2, b=8b = -8, and c=9c = -9.
  2. Use quadratic formula: Use the quadratic formula to solve for x. The quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}.
  3. Calculate discriminant: Calculate the discriminant D=b24acD = b^2 - 4ac.\newlineD=(8)24(2)(9)D = (-8)^2 - 4(2)(-9)\newlineD=64+72D = 64 + 72\newlineD=136D = 136\newlineThe discriminant is positive, which means there are two real and distinct solutions.
  4. Substitute values into formula: Substitute the values of aa, bb, and DD into the quadratic formula.\newlinex=(8)±13622x = \frac{-(-8) \pm \sqrt{136}}{2 \cdot 2}\newlinex=8±1364x = \frac{8 \pm \sqrt{136}}{4}
  5. Simplify square root: Simplify the square root of the discriminant. 136\sqrt{136} can be simplified to 4×34\sqrt{4 \times 34}, which is 2×342 \times \sqrt{34}.
  6. Substitute simplified square root: Substitute the simplified square root back into the equation. x=8±2344x = \frac{8 \pm 2 \cdot \sqrt{34}}{4}
  7. Simplify equation: Simplify the equation by dividing both terms in the numerator by 44.\newlinex=84±2344x = \frac{8}{4} \pm \frac{2 \cdot \sqrt{34}}{4}\newlinex=2±342x = 2 \pm \frac{\sqrt{34}}{2}
  8. Write final solutions: Write the final solutions.\newlineThe solutions are x=2+(342)x = 2 + \left(\frac{\sqrt{34}}{2}\right) and x=2(342)x = 2 - \left(\frac{\sqrt{34}}{2}\right).

More problems from Solve polynomial equations