Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=(x)/(x^(2)+1)
Choose 1 answer:
(A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=xx2+1 f(x)=\frac{x}{x^{2}+1} \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=xx2+1 f(x)=\frac{x}{x^{2}+1} \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Define function and find f(-x): Define the function f(x) and find f(-x).\newlineThe function given is f(x)=xx2+1f(x)=\frac{x}{x^2+1}. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x).\newlineCalculate f(x)f(-x) by substituting x-x for xx in the function.\newlinef(x)=x(x)2+1f(-x)=\frac{-x}{(-x)^2+1}
  2. Calculate f(x)f(-x): Simplify f(x)f(-x).\newlineSimplify the expression by noting that (x)2(-x)^2 is the same as x2x^2 because the square of a negative number is positive.\newlinef(x)=xx2+1f(-x)=\frac{-x}{x^2+1}
  3. Simplify f(x)f(-x): Compare f(x)f(x) and f(x)f(-x).\newlineWe have f(x)=xx2+1f(x)=\frac{x}{x^2+1} and f(x)=xx2+1f(-x)=\frac{-x}{x^2+1}.\newlineNotice that f(x)f(-x) is not equal to f(x)f(x) because the numerator changes sign, and f(x)f(-x) is not equal to f(x)-f(x) because only the numerator changes sign while the denominator remains the same.\newlineTherefore, the function is neither even nor odd.

More problems from Even and odd functions