Q. Is the following function even, odd, or neither?f(x)=x3−4xChoose 1 answer:(A) Even(B) Odd(C) Neither
Determine Function Type: To determine if the function f(x) is even, odd, or neither, we need to compare f(x) with f(−x). If f(−x)=f(x), then the function is even. If f(−x)=−f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
Substitute −x for x : First, let's find f(−x) by substituting −x for x in the function f(x)=x3−4x.f(−x)=(−x)3−4(−x)
Simplify f(−x): Now, simplify the expression for f(−x). f(−x)=(-x)3+4x f(−x)=-x3+4x
Compare f(x) with f(−x): We have the original function f(x)=x3−4x and the transformed function f(−x)=−x3+4x. Comparing f(x) with f(−x), we see that f(−x) is not equal to f(x) and f(−x) is not equal to −f(x). Therefore, the function f(x) is neither even nor odd.