Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=x^(3)-4x
Choose 1 answer:
(A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=x34x f(x)=x^{3}-4 x \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=x34x f(x)=x^{3}-4 x \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Determine Function Type: To determine if the function f(x)f(x) is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(-x) = f(x), then the function is even. If f(x)=f(x)f(-x) = -f(x), then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Substitute x -x for x x : First, let's find f(x) f(-x) by substituting x -x for x x in the function f(x)=x34x f(x)=x^3-4x .f(x)=(x)34(x) f(-x)=(-x)^3-4(-x)
  3. Simplify f(x)f(-x): Now, simplify the expression for f(x)f(-x).
    f(x)=(-x)3+4xf(-x)=(\text{-}x)^3+4x
    f(x)=-x3+4xf(-x)=\text{-}x^3+4x
  4. Compare f(x)f(x) with f(x)f(-x): We have the original function f(x)=x34xf(x)=x^3-4x and the transformed function f(x)=x3+4xf(-x)=-x^3+4x. Comparing f(x)f(x) with f(x)f(-x), we see that f(x)f(-x) is not equal to f(x)f(x) and f(x)f(-x) is not equal to f(x)-f(x). Therefore, the function f(x)f(x) is neither even nor odd.

More problems from Even and odd functions