Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=2|x|-5
Choose 1 answer:
(A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=2x5 f(x)=2|x|-5 \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=2x5 f(x)=2|x|-5 \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Determine Even, Odd, Neither: To determine if the function f(x)f(x) is even, odd, or neither, we need to compare f(x)f(x) with f(x)f(-x). If f(x)=f(x)f(x) = f(-x) for all xx, then the function is even. If f(x)=f(x)f(x) = -f(-x) for all xx, then the function is odd. If neither condition is met, the function is neither even nor odd.
  2. Find f(x)f(-x): Let's find f(x)f(-x) by substituting x-x for xx in the function f(x)=2x5f(x)=2|x|-5.
    f(x)=2x5f(-x) = 2|-x|-5
    Since the absolute value of x-x is the same as the absolute value of xx (x=x|x| = |-x|), we can simplify this to:
    f(x)=2x5f(-x) = 2|x|-5
  3. Compare f(x)f(x) and f(x)f(-x): Now we compare f(x)f(x) and f(x)f(-x):
    f(x)=2x5f(x) = 2|x| - 5
    f(x)=2x5f(-x) = 2|-x| - 5
    We can see that f(x)f(x) and f(x)f(-x) are the same for all xx. Therefore, the function f(x)f(x) is even.

More problems from Even and odd functions