Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let

h(x)=2x^(3)+3x^(2)-12 x+5". "
The absolute minimum value of 
h over the closed interval 
-3 <= x <= 2 occurs at what 
x value?
Choose 1 answer:
(A) 2
(B) 1
(C) -2
(D) -3

Let h(x)=2x3+3x212x+5h(x)=2 x^{3}+3 x^{2}-12 x+5 \text {. } \newlineThe absolute minimum value of h h over the closed interval 3x2 -3 \leq x \leq 2 occurs at what x x value?\newlineChoose 11 answer:\newline(A) 22\newline(B) 11\newline(C) 2-2\newline(D) 3-3

Full solution

Q. Let h(x)=2x3+3x212x+5h(x)=2 x^{3}+3 x^{2}-12 x+5 \text {. } \newlineThe absolute minimum value of h h over the closed interval 3x2 -3 \leq x \leq 2 occurs at what x x value?\newlineChoose 11 answer:\newline(A) 22\newline(B) 11\newline(C) 2-2\newline(D) 3-3
  1. Calculate Derivative of h(x)h(x): To find the absolute minimum value of the function h(x)h(x) on the closed interval [3,2][-3, 2], we need to find the critical points of h(x)h(x) within the interval and evaluate h(x)h(x) at the endpoints of the interval. Critical points occur where the derivative h(x)h'(x) is zero or undefined. First, we calculate the derivative of h(x)h(x).h(x)=ddx[2x3+3x212x+5]h'(x) = \frac{d}{dx} [2x^3 + 3x^2 - 12x + 5]=6x2+6x12= 6x^2 + 6x - 12
  2. Find Critical Points: Next, we find the critical points by setting the derivative equal to zero and solving for xx.6x2+6x12=06x^2 + 6x - 12 = 0Divide by 66 to simplify:x2+x2=0x^2 + x - 2 = 0Factor the quadratic equation:(x+2)(x1)=0(x + 2)(x - 1) = 0So, the critical points are x=2x = -2 and x=1x = 1.
  3. Evaluate Function at Points: Now we need to evaluate the function h(x)h(x) at the critical points and at the endpoints of the interval, x=3x = -3 and x=2x = 2.
    h(3)=2(3)3+3(3)212(3)+5h(-3) = 2(-3)^3 + 3(-3)^2 - 12(-3) + 5
    =54+27+36+5\quad\quad= -54 + 27 + 36 + 5
    =14\quad\quad= 14
    h(2)=2(2)3+3(2)212(2)+5h(-2) = 2(-2)^3 + 3(-2)^2 - 12(-2) + 5
    =16+12+24+5\quad\quad= -16 + 12 + 24 + 5
    =25\quad\quad= 25
    h(1)=2(1)3+3(1)212(1)+5h(1) = 2(1)^3 + 3(1)^2 - 12(1) + 5
    x=3x = -300
    x=3x = -311
    x=3x = -322
    x=3x = -333
    x=3x = -344
  4. Identify Absolute Minimum: Comparing the values of h(x)h(x) at the critical points and endpoints, we find that the smallest value is h(1)=2h(1) = -2. Therefore, the absolute minimum value of h(x)h(x) over the interval [3,2][-3, 2] occurs at x=1x = 1.

More problems from Conjugate root theorems