Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=x^(3)-12 x+7.
The absolute maximum value of 
g over the closed interval 
[-4,5] occurs at what 
x-value?
Choose 1 answer:
(A) -4
(B) -2
(C) 2
(D) 5

Let g(x)=x312x+7 g(x)=x^{3}-12 x+7 .\newlineThe absolute maximum value of g g over the closed interval [4,5] [-4,5] occurs at what x x -value?\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 2-2\newline(C) 22\newline(D) 55

Full solution

Q. Let g(x)=x312x+7 g(x)=x^{3}-12 x+7 .\newlineThe absolute maximum value of g g over the closed interval [4,5] [-4,5] occurs at what x x -value?\newlineChoose 11 answer:\newline(A) 4-4\newline(B) 2-2\newline(C) 22\newline(D) 55
  1. Calculate derivative: To find the absolute maximum value of g(x)g(x) on the interval [4,5][-4, 5], we need to evaluate the function at the critical points and the endpoints of the interval. Critical points occur where the derivative g(x)g'(x) is zero or undefined.\newlineCalculate the derivative of g(x)g(x): g(x)=3x212g'(x) = 3x^2 - 12.
  2. Find critical points: Set the derivative equal to zero to find the critical points: 3x212=03x^2 - 12 = 0. Solve for xx: x2=4x^2 = 4, so x=±2x = \pm2. Check if these critical points are within the interval [4,5][-4, 5].
  3. Evaluate at points: Both critical points, x=2x = -2 and x=2x = 2, are within the interval [4,5][-4, 5].\newlineNow, evaluate g(x)g(x) at the critical points and the endpoints of the interval: x=4,2,2,x = -4, -2, 2, and 55.
  4. Compare for maximum: Evaluate g(x)g(x) at x=4x = -4: g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -9.
  5. Compare for maximum: Evaluate g(x)g(x) at x=4x = -4: g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -9.Evaluate g(x)g(x) at x=2x = -2: g(2)=(2)312(2)+7=8+24+7=23g(-2) = (-2)^3 - 12(-2) + 7 = -8 + 24 + 7 = 23.
  6. Compare for maximum: Evaluate g(x)g(x) at x=4x = -4: g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -9.Evaluate g(x)g(x) at x=2x = -2: g(2)=(2)312(2)+7=8+24+7=23g(-2) = (-2)^3 - 12(-2) + 7 = -8 + 24 + 7 = 23.Evaluate g(x)g(x) at x=2x = 2: g(2)=(2)312(2)+7=824+7=9g(2) = (2)^3 - 12(2) + 7 = 8 - 24 + 7 = -9.
  7. Compare for maximum: Evaluate g(x)g(x) at x=4x = -4: g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -9.Evaluate g(x)g(x) at x=2x = -2: g(2)=(2)312(2)+7=8+24+7=23g(-2) = (-2)^3 - 12(-2) + 7 = -8 + 24 + 7 = 23.Evaluate g(x)g(x) at x=2x = 2: g(2)=(2)312(2)+7=824+7=9g(2) = (2)^3 - 12(2) + 7 = 8 - 24 + 7 = -9.Evaluate g(x)g(x) at x=4x = -400: x=4x = -411.
  8. Compare for maximum: Evaluate g(x)g(x) at x=4x = -4: g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -9.Evaluate g(x)g(x) at x=2x = -2: g(2)=(2)312(2)+7=8+24+7=23g(-2) = (-2)^3 - 12(-2) + 7 = -8 + 24 + 7 = 23.Evaluate g(x)g(x) at x=2x = 2: g(2)=(2)312(2)+7=824+7=9g(2) = (2)^3 - 12(2) + 7 = 8 - 24 + 7 = -9.Evaluate g(x)g(x) at x=4x = -400: x=4x = -411.Compare the values of g(x)g(x) at x=4x = -4, x=4x = -444, x=4x = -455, and x=4x = -466 to find the maximum value.x=4x = -477, x=4x = -488, x=4x = -499, g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -900.The maximum value is g(4)=(4)312(4)+7=64+48+7=9g(-4) = (-4)^3 - 12(-4) + 7 = -64 + 48 + 7 = -911, which occurs at x=4x = -400.

More problems from Conjugate root theorems