Q. Let g(x)=x3−12x+7.The absolute maximum value of g over the closed interval [−4,5] occurs at what x-value?Choose 1 answer:(A) −4(B) −2(C) 2(D) 5
Calculate derivative: To find the absolute maximum value of g(x) on the interval [−4,5], we need to evaluate the function at the critical points and the endpoints of the interval. Critical points occur where the derivative g′(x) is zero or undefined.Calculate the derivative of g(x): g′(x)=3x2−12.
Find critical points: Set the derivative equal to zero to find the critical points: 3x2−12=0. Solve for x: x2=4, so x=±2. Check if these critical points are within the interval [−4,5].
Evaluate at points: Both critical points, x=−2 and x=2, are within the interval [−4,5].Now, evaluate g(x) at the critical points and the endpoints of the interval: x=−4,−2,2, and 5.
Compare for maximum: Evaluate g(x) at x=−4: g(−4)=(−4)3−12(−4)+7=−64+48+7=−9.
Compare for maximum: Evaluate g(x) at x=−4: g(−4)=(−4)3−12(−4)+7=−64+48+7=−9.Evaluate g(x) at x=−2: g(−2)=(−2)3−12(−2)+7=−8+24+7=23.
Compare for maximum: Evaluate g(x) at x=−4: g(−4)=(−4)3−12(−4)+7=−64+48+7=−9.Evaluate g(x) at x=−2: g(−2)=(−2)3−12(−2)+7=−8+24+7=23.Evaluate g(x) at x=2: g(2)=(2)3−12(2)+7=8−24+7=−9.
Compare for maximum: Evaluate g(x) at x=−4: g(−4)=(−4)3−12(−4)+7=−64+48+7=−9.Evaluate g(x) at x=−2: g(−2)=(−2)3−12(−2)+7=−8+24+7=23.Evaluate g(x) at x=2: g(2)=(2)3−12(2)+7=8−24+7=−9.Evaluate g(x) at x=−40: x=−41.
Compare for maximum: Evaluate g(x) at x=−4: g(−4)=(−4)3−12(−4)+7=−64+48+7=−9.Evaluate g(x) at x=−2: g(−2)=(−2)3−12(−2)+7=−8+24+7=23.Evaluate g(x) at x=2: g(2)=(2)3−12(2)+7=8−24+7=−9.Evaluate g(x) at x=−40: x=−41.Compare the values of g(x) at x=−4, x=−44, x=−45, and x=−46 to find the maximum value.x=−47, x=−48, x=−49, g(−4)=(−4)3−12(−4)+7=−64+48+7=−90.The maximum value is g(−4)=(−4)3−12(−4)+7=−64+48+7=−91, which occurs at x=−40.