Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Find the product. Simplify your answer.
\newline
(
4
q
−
1
)
(
2
q
+
1
)
(4q-1)(2q+1)
(
4
q
−
1
)
(
2
q
+
1
)
View step-by-step help
Home
Math Problems
Algebra 1
Multiply two binomials
Full solution
Q.
Find the product. Simplify your answer.
\newline
(
4
q
−
1
)
(
2
q
+
1
)
(4q-1)(2q+1)
(
4
q
−
1
)
(
2
q
+
1
)
Apply Distributive Property:
Apply the
distributive property
to multiply the two binomials
(
4
q
−
1
)
(4q-1)
(
4
q
−
1
)
and
(
2
q
+
1
)
(2q+1)
(
2
q
+
1
)
.
(
4
q
−
1
)
(
2
q
+
1
)
=
4
q
(
2
q
)
+
4
q
(
1
)
−
1
(
2
q
)
−
1
(
1
)
(4q-1)(2q+1) = 4q(2q) + 4q(1) - 1(2q) - 1(1)
(
4
q
−
1
)
(
2
q
+
1
)
=
4
q
(
2
q
)
+
4
q
(
1
)
−
1
(
2
q
)
−
1
(
1
)
Perform Multiplication:
Perform the multiplication for each term.
\newline
4
q
(
2
q
)
=
8
q
2
4q(2q) = 8q^2
4
q
(
2
q
)
=
8
q
2
\newline
4
q
(
1
)
=
4
q
4q(1) = 4q
4
q
(
1
)
=
4
q
\newline
−
1
(
2
q
)
=
−
2
q
-1(2q) = -2q
−
1
(
2
q
)
=
−
2
q
\newline
−
1
(
1
)
=
−
1
-1(1) = -1
−
1
(
1
)
=
−
1
Combine Like Terms:
Combine the like terms from the multiplication.
\newline
8
q
2
+
4
q
−
2
q
−
1
8q^2 + 4q - 2q - 1
8
q
2
+
4
q
−
2
q
−
1
\newline
8
q
2
+
(
4
q
−
2
q
)
−
1
8q^2 + (4q - 2q) - 1
8
q
2
+
(
4
q
−
2
q
)
−
1
\newline
8
q
2
+
2
q
−
1
8q^2 + 2q - 1
8
q
2
+
2
q
−
1
More problems from Multiply two binomials
Question
Find the solutions of the quadratic equation
2
x
2
−
8
x
−
9
=
0
2 x^{2}-8 x-9=0
2
x
2
−
8
x
−
9
=
0
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
±
34
2
i
2 \pm \frac{\sqrt{34}}{2} i
2
±
2
34
i
\newline
(B)
−
2
±
34
2
i
-2 \pm \frac{\sqrt{34}}{2} i
−
2
±
2
34
i
\newline
(C)
2
±
34
2
2 \pm \frac{\sqrt{34}}{2}
2
±
2
34
\newline
(D)
1
±
34
4
1 \pm \frac{\sqrt{34}}{4}
1
±
4
34
Get tutor help
Posted 10 months ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
−
5
x
+
4
)
(
x
−
3
)
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} (-5 x+4)(x-3)=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
(
−
5
x
+
4
)
(
x
−
3
)
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Posted 10 months ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
2
x
+
4
)
(
3
x
−
2
)
=
0
(2 x+4)(3 x-2)=0
(
2
x
+
4
)
(
3
x
−
2
)
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Posted 10 months ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
3
x
−
6
)
(
−
x
+
3
)
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} (3 x-6)(-x+3)=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
(
3
x
−
6
)
(
−
x
+
3
)
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Posted 10 months ago
Question
Solve for
x
x
x
.
\newline
Enter the solutions from least to greatest.
\newline
(
x
+
6
)
(
−
x
+
1
)
=
0
(x+6)(-x+1)=0
(
x
+
6
)
(
−
x
+
1
)
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Posted 10 months ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
3
x
2
+
2
f(x)=\frac{3}{x^{2}+2}
f
(
x
)
=
x
2
+
2
3
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 10 months ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
1
4
−
x
2
f(x)=\frac{1}{4-x^{2}}
f
(
x
)
=
4
−
x
2
1
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 10 months ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
2
∣
x
∣
−
5
f(x)=2|x|-5
f
(
x
)
=
2∣
x
∣
−
5
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 10 months ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
x
x
2
+
1
f(x)=\frac{x}{x^{2}+1}
f
(
x
)
=
x
2
+
1
x
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 10 months ago
Question
Is the following function even, odd, or neither?
\newline
f
(
x
)
=
x
3
−
4
x
f(x)=x^{3}-4 x
f
(
x
)
=
x
3
−
4
x
\newline
Choose
1
1
1
answer:
\newline
(A) Even
\newline
(B) Odd
\newline
(C) Neither
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant