Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Is the following function even, odd, or neither?

f(x)=x^(4)-2x^(2)
Choose 1 answer:
A) Even
(B) Odd
(c) Neither

Is the following function even, odd, or neither?\newlinef(x)=x42x2 f(x)=x^{4}-2 x^{2} \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither

Full solution

Q. Is the following function even, odd, or neither?\newlinef(x)=x42x2 f(x)=x^{4}-2 x^{2} \newlineChoose 11 answer:\newline(A) Even\newline(B) Odd\newline(C) Neither
  1. Define function and determine f(-x): Define the function f(x) and determine f(-x).\newlineThe function given is f(x)=x42x2f(x)=x^4-2x^2. To determine if the function is even, odd, or neither, we need to evaluate f(x)f(-x) and compare it to f(x)f(x).
  2. Substitute x -x in f(x) f(x) : Substitute x -x for x x in f(x) f(x) to find f(x) f(-x) .f(x)=(x)42(x)2 f(-x) = (-x)^4 - 2(-x)^2
  3. Simplify f(x)f(-x): Simplify the right side of the function.f(x)=(x)42(x)2f(-x)=(-x)^4-2(-x)^2 simplifies to f(x)=x42x2f(-x)=x^4-2x^2 because (x)4=x4(-x)^4 = x^4 and (x)2=x2(-x)^2 = x^2.
  4. Compare f(x)f(x) and f(x)f(-x): Compare f(x)f(x) and f(x)f(-x).\newlineWe have f(x)=x42x2f(x)=x^4-2x^2 and f(x)=(x)42(x)2f(-x)=(-x)^4-2(-x)^2. Since f(x)=f(x)f(-x) = f(x), the function f(x)f(x) is an even function.

More problems from Even and odd functions