Q. Is the following function even, odd, or neither?f(x)=x4−2x2Choose 1 answer:(A) Even(B) Odd(C) Neither
Define function and determine f(-x): Define the function f(x) and determine f(-x).The function given is f(x)=x4−2x2. To determine if the function is even, odd, or neither, we need to evaluate f(−x) and compare it to f(x).
Substitute −x in f(x) : Substitute −x for x in f(x) to find f(−x).f(−x)=(−x)4−2(−x)2
Simplify f(−x): Simplify the right side of the function.f(−x)=(−x)4−2(−x)2 simplifies to f(−x)=x4−2x2 because (−x)4=x4 and (−x)2=x2.
Compare f(x) and f(−x): Compare f(x) and f(−x).We have f(x)=x4−2x2 and f(−x)=(−x)4−2(−x)2. Since f(−x)=f(x), the function f(x) is an even function.