Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(d)/(dx)[sqrt(8x^(2)+2x-3)]=?
Choose 1 answer:
(A) 
(1)/(2sqrt(16 x+2))
(B) 
(8x+1)/(sqrtx)
(C) 
sqrt(16 x+2)
(D) 
(8x+1)/(sqrt(8x^(2)+2x-3))

ddx[8x2+2x3]=? \frac{d}{d x}\left[\sqrt{8 x^{2}+2 x-3}\right]=? \newlineChoose 11 answer:\newline(A) 1216x+2 \frac{1}{2 \sqrt{16 x+2}} \newline(B) 8x+1x \frac{8 x+1}{\sqrt{x}} \newline(C) 16x+2 \sqrt{16 x+2} \newline(D) 8x+18x2+2x3 \frac{8 x+1}{\sqrt{8 x^{2}+2 x-3}}

Full solution

Q. ddx[8x2+2x3]=? \frac{d}{d x}\left[\sqrt{8 x^{2}+2 x-3}\right]=? \newlineChoose 11 answer:\newline(A) 1216x+2 \frac{1}{2 \sqrt{16 x+2}} \newline(B) 8x+1x \frac{8 x+1}{\sqrt{x}} \newline(C) 16x+2 \sqrt{16 x+2} \newline(D) 8x+18x2+2x3 \frac{8 x+1}{\sqrt{8 x^{2}+2 x-3}}
  1. Chain Rule Explanation: To find the derivative of the function f(x)=8x2+2x3 f(x) = \sqrt{8x^2 + 2x - 3} , we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Define Inner and Outer Functions: Let's denote the inner function as u(x)=8x2+2x3 u(x) = 8x^2 + 2x - 3 . The outer function is the square root function, which we can write as v(u)=u v(u) = \sqrt{u} . We need to find the derivatives v(u) v'(u) and u(x) u'(x) .
  3. Find Derivative of Outer Function: The derivative of the outer function v(u)=u v(u) = \sqrt{u} with respect to u u is v(u)=12u v'(u) = \frac{1}{2\sqrt{u}} .
  4. Find Derivative of Inner Function: The derivative of the inner function u(x)=8x2+2x3 u(x) = 8x^2 + 2x - 3 with respect to x x is u(x)=16x+2 u'(x) = 16x + 2 .
  5. Apply Chain Rule: Now we apply the chain rule: ddxf(x)=v(u)u(x) \frac{d}{dx} f(x) = v'(u) \cdot u'(x) . Substituting the derivatives we found, we get ddxf(x)=12u(16x+2) \frac{d}{dx} f(x) = \frac{1}{2\sqrt{u}} \cdot (16x + 2) .
  6. Substitute Derivatives: Substitute back u u with 8x2+2x3 8x^2 + 2x - 3 to express the derivative in terms of x x : ddxf(x)=128x2+2x3(16x+2) \frac{d}{dx} f(x) = \frac{1}{2\sqrt{8x^2 + 2x - 3}} \cdot (16x + 2) .
  7. Simplify Expression: Simplify the expression: ddxf(x)=16x+228x2+2x3 \frac{d}{dx} f(x) = \frac{16x + 2}{2\sqrt{8x^2 + 2x - 3}} .
  8. Final Derivative: Further simplify the expression by dividing the numerator and the denominator by 22: ddxf(x)=8x+18x2+2x3 \frac{d}{dx} f(x) = \frac{8x + 1}{\sqrt{8x^2 + 2x - 3}} .

More problems from Add, subtract, multiply, and divide polynomials