Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following complex numbers is equivalent to (35i)/(8+2i)(3-5i)/(8+2i) ? (Note: i=1i=\sqrt{-1})\newlineA) (3)/(8)(5i)/(2)(3)/(8)-(5i)/(2)\newlineB) (3)/(8)+(5i)/(2)(3)/(8)+(5i)/(2)\newlineC) (7)/(34)(23i)/(34)(7)/(34)-(23 i)/(34)\newlineD) (7)/(34)+(23i)/(34)(7)/(34)+(23 i)/(34)

Full solution

Q. Which of the following complex numbers is equivalent to (35i)/(8+2i)(3-5i)/(8+2i) ? (Note: i=1i=\sqrt{-1})\newlineA) (3)/(8)(5i)/(2)(3)/(8)-(5i)/(2)\newlineB) (3)/(8)+(5i)/(2)(3)/(8)+(5i)/(2)\newlineC) (7)/(34)(23i)/(34)(7)/(34)-(23 i)/(34)\newlineD) (7)/(34)+(23i)/(34)(7)/(34)+(23 i)/(34)
  1. Multiply by Conjugate: To simplify the complex fraction (35i)/(8+2i)(3-5i)/(8+2i), we will multiply the numerator and the denominator by the conjugate of the denominator to remove the imaginary part from the denominator.\newlineThe conjugate of (8+2i)(8+2i) is (82i)(8-2i).
  2. Expand Numerator: Multiply the numerator and the denominator by the conjugate of the denominator: (35i)(82i)(8+2i)(82i)\frac{(3-5i)(8-2i)}{(8+2i)(8-2i)}
  3. Expand Denominator: Expand the numerator:\newline(35i)(82i)=3×8+3×(2i)5i×85i×(2i)(3-5i)(8-2i) = 3\times 8 + 3\times (-2i) - 5i\times 8 - 5i\times (-2i)\newline=246i40i+10i2= 24 - 6i - 40i + 10i^2\newlineSince i2=1i^2 = -1, we have:\newline=2446i10= 24 - 46i - 10\newline=1446i= 14 - 46i
  4. Divide Numerator by Denominator: Expand the denominator:\newline(8+2i)(82i)=8×88×2i+2i×82i×2i(8+2i)(8-2i) = 8\times 8 - 8\times 2i + 2i\times 8 - 2i\times 2i\newline=6416i+16i4i2= 64 - 16i + 16i - 4i^2\newlineSince i2=1i^2 = -1, we have:\newline=64+4= 64 + 4\newline=68= 68
  5. Simplify Fraction: Now, divide the simplified numerator by the simplified denominator: \newlineegin{equation}\newline\frac{1414 - 4646i}{6868}\newline\end{equation}
  6. Final Result: Simplify the fraction by dividing both terms by 6868: \newline146846i68\frac{14}{68} - \frac{46i}{68}\newline=73423i34= \frac{7}{34} - \frac{23i}{34}
  7. Final Result: Simplify the fraction by dividing both terms by 6868: \newline146846i68\frac{14}{68} - \frac{46i}{68}\newline=73423i34= \frac{7}{34} - \frac{23i}{34}The simplified complex number is 73423i34\frac{7}{34} - \frac{23i}{34}, which corresponds to option C.