Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-x cos(-3x)dx
Answer:

Evaluate the integral.\newlinexcos(3x)dx \int-x \cos (-3 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newlinexcos(3x)dx \int-x \cos (-3 x) d x \newlineAnswer:
  1. Write Integral: Write down the integral to be solved.\newlineI=xcos(3x)dxI = \int -x \cos(-3x) \, dx
  2. Factor Out Constant: Use the property of integrals that kf(x)dx=kf(x)dx\int kf(x) \, dx = k\int f(x) \, dx, where kk is a constant, to factor out the constant 1-1 from the integral.\newlineI=xcos(3x)dxI = -\int x \cos(-3x) \, dx
  3. Apply Even Property: Recognize that cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta) due to the even property of the cosine function.\newlineI=xcos(3x)dxI = -\int x \cos(3x) \, dx
  4. Apply Integration by Parts: Apply integration by parts, where u=xu = x and dv=cos(3x)dxdv = \cos(3x) dx. Then we need to find dudu and vv.\newlineLet u=xu = x, so du=dxdu = dx.\newlineLet dv=cos(3x)dxdv = \cos(3x) dx, so v=13sin(3x)v = \frac{1}{3}\sin(3x), since the integral of cos(3x)dx\cos(3x) dx is 13sin(3x)\frac{1}{3}\sin(3x).
  5. Integrate sin(3x)\sin(3x): Apply the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du.\newlineI=(uvvdu)I = -(u \cdot v - \int v \, du)\newlineI = -\left(x \cdot \left(\frac{\(1\)}{\(3\)}\right)\sin(\(3x) - \int\left(\frac{11}{33}\right)\sin(33x) \, dx\right)
  6. Simplify and Combine: Integrate (13)sin(3x)(\frac{1}{3})\sin(3x) with respect to xx. The integral of sin(3x)\sin(3x) dxdx is 13cos(3x)-\frac{1}{3}\cos(3x), so the integral of (13)sin(3x)(\frac{1}{3})\sin(3x) dxdx is 19cos(3x)-\frac{1}{9}\cos(3x). I=(x(13)sin(3x)19cos(3x))I = -\left(x \cdot (\frac{1}{3})\sin(3x) - -\frac{1}{9}\cos(3x)\right)
  7. Factor Out Constants: Simplify the expression and combine like terms.\newlineI=(13)xsin(3x)+(19)cos(3x)+CI = -(\frac{1}{3})x \sin(3x) + (\frac{1}{9})\cos(3x) + C, where CC is the constant of integration.
  8. Factor Out Constants: Simplify the expression and combine like terms.\newlineI=(13)xsin(3x)+(19)cos(3x)+CI = -(\frac{1}{3})x \sin(3x) + (\frac{1}{9})\cos(3x) + C, where CC is the constant of integration.Factor out the constants to make the expression cleaner.\newlineI=13xsin(3x)+19cos(3x)+CI = -\frac{1}{3} x \sin(3x) + \frac{1}{9} \cos(3x) + C

More problems from Find indefinite integrals using the substitution and by parts