Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-3x sin(-2x)dx
Answer:

Evaluate the integral.\newline3xsin(2x)dx \int-3 x \sin (-2 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline3xsin(2x)dx \int-3 x \sin (-2 x) d x \newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 3xsin(2x)-3x \sin(-2x) with respect to xx.
  2. Apply integration by parts: Apply the integration by parts formula. Integration by parts states that udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are differentiable functions of xx. We choose u=3xu = -3x and dv=sin(2x)dxdv = \sin(-2x)\,dx. We need to find dudu and vv.
  3. Differentiate uu and integrate dvdv: Differentiate uu and integrate dvdv. Differentiating uu with respect to xx gives us du=3dxdu = -3 dx. Integrating dvdv, we have v=sin(2x)dxv = \int \sin(-2x)dx. To integrate sin(2x)\sin(-2x), we use the substitution method. Let dvdv00, then dvdv11, and dvdv22. Now we integrate dvdv33 with respect to dvdv44 and then substitute back. dvdv55.
  4. Apply integration by parts: Apply the integration by parts formula.\newlineNow we have u=3xu = -3x, du=3dxdu = -3 \, dx, and v=(1/2)cos(2x)v = (1/2)\cos(-2x). Plugging these into the integration by parts formula gives us:\newline3xsin(2x)dx=uvvdu\int -3x \sin(-2x)\,dx = uv - \int v \, du\newline= (3x)(1/2)cos(2x)(1/2)cos(2x)(3)dx(-3x) \cdot (1/2)\cos(-2x) - \int(1/2)\cos(-2x) \cdot (-3) \, dx\newline= (3/2)xcos(2x)+(3/2)cos(2x)dx(-3/2)x \cos(-2x) + (3/2) \int\cos(-2x) \, dx
  5. Integrate remaining integral: Integrate the remaining integral.\newlineWe need to integrate (3/2)cos(2x)(3/2)\cos(-2x) with respect to xx. Using the substitution method again, let w=2xw = -2x, then dw=2dxdw = -2 dx, and dx=dw/2dx = -dw/2. Now we integrate cos(w)\cos(w) with respect to ww and then substitute back.\newlinecos(2x)dx=cos(w)(1/2)dw=(1/2)sin(w)=(1/2)sin(2x)\int\cos(-2x) dx = \int\cos(w) \cdot (-1/2) dw = (-1/2) \cdot \sin(w) = (-1/2)\sin(-2x).\newlineSo, (3/2)cos(2x)dx=(3/2)(1/2)sin(2x)=(3/4)sin(2x)(3/2) \int\cos(-2x) dx = (3/2) \cdot (-1/2)\sin(-2x) = (-3/4)\sin(-2x).
  6. Combine and add constant: Combine the results and add the constant of integration.\newlineThe integral of 3xsin(2x)-3x \sin(-2x) with respect to xx is:\newline(32)xcos(2x)34sin(2x)+C(-\frac{3}{2})x \cos(-2x) - \frac{3}{4}\sin(-2x) + C, where CC is the constant of integration.

More problems from Find indefinite integrals using the substitution and by parts