Simplify Integral: Let's first simplify the integral by using the property of cosine that cos(−θ)=cos(θ). This simplifies our integral to:∫−2xcos(−2x)dx=∫−2xcos(2x)dxNow we can proceed with integration by parts, where we let u=−2x and dv=cos(2x)dx. Then we need to find du and v.Differentiating u with respect to x gives us du=−2dx, and integrating dv gives us ∫−2xcos(−2x)dx=∫−2xcos(2x)dx0, since the integral of ∫−2xcos(−2x)dx=∫−2xcos(2x)dx1 is ∫−2xcos(−2x)dx=∫−2xcos(2x)dx2.
Integration by Parts: Now we apply the integration by parts formula:∫udv=uv−∫vduSubstituting our chosen u, v, du, and dv, we get:∫−2xcos(2x)dx=(−2x)(21)sin(2x)−∫(21)sin(2x)(−2dx)Simplifying the right side, we have:−2x×(21)sin(2x)+∫sin(2x)dx
Integrate sin(2x): Next, we integrate ∫sin(2x)dx. The integral of sin(2x) with respect to x is (−21)cos(2x), so we have:−2x⋅(21)sin(2x)+(−21)cos(2x)+Cwhere C is the constant of integration.
Combine Terms: Now we combine the terms to get the final answer:−2x×(21)sin(2x)+(2−1)cos(2x)+C simplifies to−xsin(2x)−(21)cos(2x)+CThis is our final answer.
More problems from Find indefinite integrals using the substitution and by parts