Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-2x cos(-2x)dx
Answer:

Evaluate the integral.\newline2xcos(2x)dx \int-2 x \cos (-2 x) d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2xcos(2x)dx \int-2 x \cos (-2 x) d x \newlineAnswer:
  1. Simplify Integral: Let's first simplify the integral by using the property of cosine that cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta). This simplifies our integral to:\newline2xcos(2x)dx=2xcos(2x)dx\int -2x \cos(-2x)\,dx = \int -2x \cos(2x)\,dx\newlineNow we can proceed with integration by parts, where we let u=2xu = -2x and dv=cos(2x)dxdv = \cos(2x)\,dx. Then we need to find dudu and vv.\newlineDifferentiating uu with respect to xx gives us du=2dxdu = -2\,dx, and integrating dvdv gives us 2xcos(2x)dx=2xcos(2x)dx\int -2x \cos(-2x)\,dx = \int -2x \cos(2x)\,dx00, since the integral of 2xcos(2x)dx=2xcos(2x)dx\int -2x \cos(-2x)\,dx = \int -2x \cos(2x)\,dx11 is 2xcos(2x)dx=2xcos(2x)dx\int -2x \cos(-2x)\,dx = \int -2x \cos(2x)\,dx22.
  2. Integration by Parts: Now we apply the integration by parts formula:\newlineudv=uvvdu\int u\,dv = uv - \int v\,du\newlineSubstituting our chosen uu, vv, dudu, and dvdv, we get:\newline2xcos(2x)dx=(2x)(12)sin(2x)(12)sin(2x)(2dx)\int -2x \cos(2x)\,dx = (-2x)(\frac{1}{2})\sin(2x) - \int (\frac{1}{2})\sin(2x)(-2\,dx)\newlineSimplifying the right side, we have:\newline2x×(12)sin(2x)+sin(2x)dx-2x \times (\frac{1}{2})\sin(2x) + \int \sin(2x)\,dx
  3. Integrate sin(2x)\sin(2x): Next, we integrate sin(2x)dx\int \sin(2x) \, dx. The integral of sin(2x)\sin(2x) with respect to xx is (12)cos(2x)(-\frac{1}{2})\cos(2x), so we have:\newline2x(12)sin(2x)+(12)cos(2x)+C-2x \cdot (\frac{1}{2})\sin(2x) + (-\frac{1}{2})\cos(2x) + C\newlinewhere CC is the constant of integration.
  4. Combine Terms: Now we combine the terms to get the final answer:\newline2x×(12)sin(2x)+(12)cos(2x)+C-2x \times (\frac{1}{2})\sin(2x) + (\frac{-1}{2})\cos(2x) + C simplifies to\newlinexsin(2x)(12)cos(2x)+C-x\sin(2x) - (\frac{1}{2})\cos(2x) + C\newlineThis is our final answer.

More problems from Find indefinite integrals using the substitution and by parts