Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral.

int-2xe^(2x)dx
Answer:

Evaluate the integral.\newline2xe2xdx \int-2 x e^{2 x} d x \newlineAnswer:

Full solution

Q. Evaluate the integral.\newline2xe2xdx \int-2 x e^{2 x} d x \newlineAnswer:
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function 2xe2x-2xe^{2x} with respect to xx.\newlineI=2xe2xdxI = \int -2xe^{2x}\,dx
  2. Use integration by parts: Use integration by parts.\newlineIntegration by parts formula is udv=uvvdu\int u \, dv = uv - \int v \, du, where uu and dvdv are parts of the integrand.\newlineLet u=2xu = -2x (which will be differentiated) and dv=e2xdxdv = e^{2x}dx (which will be integrated).
  3. Differentiate and integrate: Differentiate uu and integrate dvdv. Differentiating uu with respect to xx gives us du=2dxdu = -2dx. Integrating dvdv with respect to xx gives us v=12e2xv = \frac{1}{2}e^{2x}, since the integral of eaxe^{ax} is 1aeax\frac{1}{a}e^{ax} and here dvdv00.
  4. Apply integration by parts: Apply the integration by parts formula.\newlineNow we have u=2xu = -2x, du=2dxdu = -2dx, v=12e2xv = \frac{1}{2}e^{2x}.\newlineUsing the integration by parts formula, we get:\newlineI=uvvduI = uv - \int v du\newlineI=(2x)(12)e2x(12)e2x(2dx)I = (-2x)\left(\frac{1}{2}\right)e^{2x} - \int \left(\frac{1}{2}\right)e^{2x}(-2dx)
  5. Simplify expression: Simplify the expression.\newlineI=xe2xe2xdxI = -xe^{2x} - \int -e^{2x}\,dx\newlineNow we need to integrate e2x-e^{2x} with respect to xx.
  6. Integrate e2x-e^{2x}: Integrate e2x-e^{2x} with respect to xx. The integral of e2x-e^{2x} is 12e2x-\frac{1}{2}e^{2x}, since the integral of eaxe^{ax} is 1aeax\frac{1}{a}e^{ax} and here a=2a = 2.
  7. Combine and add constant: Combine the results and add the constant of integration.\newlineI=xe2x(12)e2x+CI = -xe^{2x} - \left(-\frac{1}{2}\right)e^{2x} + C\newlineI=xe2x+(12)e2x+CI = -xe^{2x} + \left(\frac{1}{2}\right)e^{2x} + C
  8. Write final answer: Write the final answer.\newlineThe integral of 2xe2x-2xe^{2x} with respect to xx is:\newlineI=xe2x+(12)e2x+CI = -xe^{2x} + \left(\frac{1}{2}\right)e^{2x} + C

More problems from Find indefinite integrals using the substitution and by parts