Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

sum_(k=0)^(19)6(1.5)^(k)~~
Choose 1 answer:
(A) 7983.02
(B) 
13,301.03
(C) 
26,590.05
(D) 
39,891.08

k=0196(1.5)k \sum_{k=0}^{19} 6(1.5)^{k} \approx \newlineChoose 11 answer:\newline(A) 79837983.0202\newline(B) 13,301.03 13,301.03 \newline(C) 26,590.05 26,590.05 \newline(D) 39,891.08 39,891.08

Full solution

Q. k=0196(1.5)k \sum_{k=0}^{19} 6(1.5)^{k} \approx \newlineChoose 11 answer:\newline(A) 79837983.0202\newline(B) 13,301.03 13,301.03 \newline(C) 26,590.05 26,590.05 \newline(D) 39,891.08 39,891.08
  1. Recognize as geometric series: Recognize the series as a geometric series where the first term a=6 a = 6 and the common ratio r=1.5 r = 1.5 . The sum of a finite geometric series can be calculated using the formula Sn=a1rn1r S_n = a \frac{1 - r^n}{1 - r} , where n n is the number of terms.
  2. Calculate number of terms: Calculate the number of terms n n . Since the series starts at k=0 k=0 and goes up to k=19 k=19 , there are 190+1=20 19 - 0 + 1 = 20 terms.
  3. Substitute values into formula: Substitute the values into the sum formula for a geometric series. Here, a=6 a = 6 , r=1.5 r = 1.5 , and n=20 n = 20 . So, S20=61(1.5)2011.5 S_{20} = 6 \frac{1 - (1.5)^{20}}{1 - 1.5} .
  4. Calculate sum: Calculate the sum S20 S_{20} . First, calculate (1.5)20 (1.5)^{20} and then substitute it into the formula.
  5. Handle negative denominator: Since r > 1 , the denominator 1r 1 - r is negative. Therefore, we need to be careful with the signs when calculating the sum. The correct formula application is S20=61(1.5)2011.5=61(1.5)200.5 S_{20} = 6 \frac{1 - (1.5)^{20}}{1 - 1.5} = 6 \frac{1 - (1.5)^{20}}{-0.5} .
  6. Compute (11.55)^2020: Compute (1.5)20 (1.5)^{20} using a calculator.\newline(1.5)2033219.476736 (1.5)^{20} \approx 33219.476736
  7. Substitute into formula and calculate: Substitute (1.5)20 (1.5)^{20} into the sum formula and calculate S20 S_{20} .\newlineS20=6133219.4767360.5 S_{20} = 6 \frac{1 - 33219.476736}{-0.5} \newlineS20=633218.4767360.5 S_{20} = 6 \frac{-33218.476736}{-0.5} \newlineS20=666436.953472 S_{20} = 6 \cdot 66436.953472 \newlineS20=398621.720832 S_{20} = 398621.720832

More problems from Euler's method