Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=x^(3)-6x^(2)-10 x and let 
c be the number that satisfies the Mean Value Theorem for 
h on the interval 
[-4,5].
What is 
c ?
Choose 1 answer:
(A) -2
(B) -1
(C) 1
(D) 3

Let h(x)=x36x210x h(x)=x^{3}-6 x^{2}-10 x and let c c be the number that satisfies the Mean Value Theorem for h h on the interval [4,5] [-4,5] .\newlineWhat is c c ?\newlineChoose 11 answer:\newline(A) 2-2\newline(B) 1-1\newline(C) 11\newline(D) 33

Full solution

Q. Let h(x)=x36x210x h(x)=x^{3}-6 x^{2}-10 x and let c c be the number that satisfies the Mean Value Theorem for h h on the interval [4,5] [-4,5] .\newlineWhat is c c ?\newlineChoose 11 answer:\newline(A) 2-2\newline(B) 1-1\newline(C) 11\newline(D) 33
  1. Find h(x)h'(x): To use the Mean Value Theorem, we need to find h(x)h'(x), which is the derivative of h(x)h(x).
    h(x)=x36x210xh(x) = x^3 - 6x^2 - 10x
    h(x)=3x212x10h'(x) = 3x^2 - 12x - 10
  2. Calculate h(x)h(x) at endpoints: Now we need to find the values of h(x)h(x) at the endpoints of the interval [4,5][-4,5].
    h(4)=(4)36(4)210(4)=6496+40=120h(-4) = (-4)^3 - 6(-4)^2 - 10(-4) = -64 - 96 + 40 = -120
    h(5)=(5)36(5)210(5)=12515050=75h(5) = (5)^3 - 6(5)^2 - 10(5) = 125 - 150 - 50 = -75
  3. Apply Mean Value Theorem: According to the Mean Value Theorem, there exists a cc in the interval (4,5)(-4,5) such that h(c)h'(c) is equal to the average rate of change of h(x)h(x) over [4,5][-4,5].\newlineThe average rate of change is (h(5)h(4))/(5(4))(h(5) - h(-4)) / (5 - (-4)).\newline(75(120))/(5(4))=45/9=5(−75 - (-120)) / (5 - (-4)) = 45 / 9 = 5
  4. Set up equation for cc: We set h(c)h'(c) equal to the average rate of change we found: 3c212c10=53c^2 - 12c - 10 = 5
  5. Factor quadratic equation: Now we solve for cc:3c212c15=03c^2 - 12c - 15 = 0
  6. Factor quadratic equation: Now we solve for cc:3c212c15=03c^2 - 12c - 15 = 0We can factor this quadratic equation or use the quadratic formula to find cc. Let's try to factor it first.(3c+3)(c5)=0(3c + 3)(c - 5) = 0

More problems from Euler's method