Q. Let g(x)=2x3−21x2+60x.What is the absolute maximum value of g over the closed interval [0,6] ?Choose 1 answer:(A) 25(B) 42(C) 36(D) 52
Find Critical Points: To find the absolute maximum, we need to find the critical points of g(x) by taking the derivative and setting it to zero.g′(x)=dxd[2x3−21x2+60x]
Calculate g′(x): Calculate g′(x):g′(x)=6x2−42x+60
Set g′(x) to zero: Set g′(x) to zero and solve for x:0=6x2−42x+60
Factor the quadratic equation: Factor the quadratic equation:0=6(x2−7x+10)0=6(x−5)(x−2)
Find critical points: Find the critical points: x=5 and x=2
Evaluate g(x): Evaluate g(x) at the critical points and the endpoints of the interval [0,6]: g(0)=2(0)3−21(0)2+60(0)=0 g(2)=2(2)3−21(2)2+60(2)=16−84+120=52 g(5)=2(5)3−21(5)2+60(5)=250−525+300=25 g(6)=2(6)3−21(6)2+60(6)=432−756+360=36
Compare values: Compare the values to find the absolute maximum:g(0)=0, g(2)=52, g(5)=25, g(6)=36The absolute maximum value is 52 at x=2.