Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=2x^(3)-21x^(2)+60 x.
What is the absolute maximum value of 
g over the closed interval 
[0,6] ?
Choose 1 answer:
(A) 25
(B) 42
(C) 36
(D) 52

Let g(x)=2x321x2+60x g(x)=2 x^{3}-21 x^{2}+60 x .\newlineWhat is the absolute maximum value of g g over the closed interval [0,6] [0,6] ?\newlineChoose 11 answer:\newline(A) 2525\newline(B) 4242\newline(C) 3636\newline(D) 5252

Full solution

Q. Let g(x)=2x321x2+60x g(x)=2 x^{3}-21 x^{2}+60 x .\newlineWhat is the absolute maximum value of g g over the closed interval [0,6] [0,6] ?\newlineChoose 11 answer:\newline(A) 2525\newline(B) 4242\newline(C) 3636\newline(D) 5252
  1. Find Critical Points: To find the absolute maximum, we need to find the critical points of g(x)g(x) by taking the derivative and setting it to zero.\newlineg(x)=ddx[2x321x2+60x]g'(x) = \frac{d}{dx} [2x^3 - 21x^2 + 60x]
  2. Calculate g(x)g'(x): Calculate g(x)g'(x):g(x)=6x242x+60g'(x) = 6x^2 - 42x + 60
  3. Set g(x)g'(x) to zero: Set g(x)g'(x) to zero and solve for x:\newline0=6x242x+600 = 6x^2 - 42x + 60
  4. Factor the quadratic equation: Factor the quadratic equation:\newline0=6(x27x+10)0 = 6(x^2 - 7x + 10)\newline0=6(x5)(x2)0 = 6(x - 5)(x - 2)
  5. Find critical points: Find the critical points: x=5x = 5 and x=2x = 2
  6. Evaluate g(x)g(x): Evaluate g(x)g(x) at the critical points and the endpoints of the interval [0,6][0,6]:
    g(0)=2(0)321(0)2+60(0)=0g(0) = 2(0)^3 - 21(0)^2 + 60(0) = 0
    g(2)=2(2)321(2)2+60(2)=1684+120=52g(2) = 2(2)^3 - 21(2)^2 + 60(2) = 16 - 84 + 120 = 52
    g(5)=2(5)321(5)2+60(5)=250525+300=25g(5) = 2(5)^3 - 21(5)^2 + 60(5) = 250 - 525 + 300 = 25
    g(6)=2(6)321(6)2+60(6)=432756+360=36g(6) = 2(6)^3 - 21(6)^2 + 60(6) = 432 - 756 + 360 = 36
  7. Compare values: Compare the values to find the absolute maximum:\newlineg(0)=0 (0) = 0 , g(2)=52 (2) = 52 , g(5)=25 (5) = 25 , g(6)=36 (6) = 36 \newlineThe absolute maximum value is 52 52 at x=2 x = 2 .

More problems from Euler's method