Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=x^(3)+6x^(2)+2.
What is the absolute minimum value of 
h over the closed interval 
-6 <= x <= 2 ?
Choose 1 answer:
(A) 34
(B) -34
(C) 2
(D) -2

Let h(x)=x3+6x2+2 h(x)=x^{3}+6 x^{2}+2 .\newlineWhat is the absolute minimum value of h h over the closed interval 6x2 -6 \leq x \leq 2 ?\newlineChoose 11 answer:\newline(A) 3434\newline(B) 34-34\newline(C) 22\newline(D) 2-2

Full solution

Q. Let h(x)=x3+6x2+2 h(x)=x^{3}+6 x^{2}+2 .\newlineWhat is the absolute minimum value of h h over the closed interval 6x2 -6 \leq x \leq 2 ?\newlineChoose 11 answer:\newline(A) 3434\newline(B) 34-34\newline(C) 22\newline(D) 2-2
  1. Find Critical Points: To find the absolute minimum value of the function h(x)h(x) on the closed interval [6,2][-6, 2], we first need to find the critical points of h(x)h(x) within the interval. Critical points occur where the derivative h(x)h'(x) is zero or undefined.
  2. Calculate Derivative: Calculate the derivative of h(x)h(x) to find h(x)h'(x):h(x)=ddx(x3+6x2+2)h'(x) = \frac{d}{dx} (x^3 + 6x^2 + 2) =3x2+12x= 3x^2 + 12x
  3. Set Equal to Zero: Set the derivative equal to zero to find the critical points:\newline3x2+12x=03x^2 + 12x = 0\newlinex(3x+12)=0x(3x + 12) = 0\newlineThis gives us two solutions: x=0x = 0 and x=4x = -4.
  4. Check Interval: Check if the critical points are within the closed interval [6,2][-6, 2]. Both x=0x = 0 and x=4x = -4 are within the interval.
  5. Evaluate Function: Evaluate the function h(x)h(x) at the critical points and at the endpoints of the interval to find the absolute minimum value:\newlineh(6)=(6)3+6(6)2+2=216+216+2=2h(-6) = (-6)^3 + 6(-6)^2 + 2 = -216 + 216 + 2 = 2\newlineh(4)=(4)3+6(4)2+2=64+96+2=34h(-4) = (-4)^3 + 6(-4)^2 + 2 = -64 + 96 + 2 = 34\newlineh(0)=(0)3+6(0)2+2=2h(0) = (0)^3 + 6(0)^2 + 2 = 2\newlineh(2)=(2)3+6(2)2+2=8+24+2=34h(2) = (2)^3 + 6(2)^2 + 2 = 8 + 24 + 2 = 34
  6. Compare Values: Compare the values of h(x)h(x) at the critical points and the endpoints to determine the absolute minimum value:\newlineh(6)=2h(-6) = 2\newlineh(4)=34h(-4) = 34\newlineh(0)=2h(0) = 2\newlineh(2)=34h(2) = 34\newlineThe absolute minimum value of h(x)h(x) on the interval [6,2][-6, 2] is 22.

More problems from Euler's method