Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=2x^(3)+21x^(2)+36 x.
What is the absolute maximum value of 
f over the closed interval 
[-8,0] ?
Choose 1 answer:
(A) 32
(B) 
180
(C) 
108
(D) 0

Let f(x)=2x3+21x2+36x f(x)=2 x^{3}+21 x^{2}+36 x .\newlineWhat is the absolute maximum value of f f over the closed interval [8,0] [-8,0] ?\newlineChoose 11 answer:\newline(A) 3232\newline(B) 180 \mathbf{1 8 0} \newline(C) 108 \mathbf{1 0 8} \newline(D) 00

Full solution

Q. Let f(x)=2x3+21x2+36x f(x)=2 x^{3}+21 x^{2}+36 x .\newlineWhat is the absolute maximum value of f f over the closed interval [8,0] [-8,0] ?\newlineChoose 11 answer:\newline(A) 3232\newline(B) 180 \mathbf{1 8 0} \newline(C) 108 \mathbf{1 0 8} \newline(D) 00
  1. Find Derivative: To find the absolute maximum value of the function on the closed interval 8,0{-8,0}, we need to find the critical points of the function within the interval and evaluate the function at these points and at the endpoints of the interval.
  2. Find Critical Points: First, we find the derivative of the function f(x)=2x3+21x2+36xf(x) = 2x^3 + 21x^2 + 36x, which will give us the slope of the tangent to the curve at any point xx. The derivative f(x)f'(x) is given by:\newlinef(x)=ddx(2x3+21x2+36x)=6x2+42x+36f'(x) = \frac{d}{dx} (2x^3 + 21x^2 + 36x) = 6x^2 + 42x + 36.
  3. Evaluate Function: Next, we find the critical points by setting the derivative equal to zero and solving for xx:6x2+42x+36=0.6x^2 + 42x + 36 = 0.To solve this quadratic equation, we can either factor it or use the quadratic formula. Let's try to factor it first.
  4. Calculate Maximum Value: Factoring the quadratic equation, we get: 6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0. This gives us two critical points: x=1x = -1 and x=6x = -6.
  5. Calculate Maximum Value: Factoring the quadratic equation, we get: \newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).
  6. Calculate Maximum Value: Factoring the quadratic equation, we get: \newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).Evaluating f(x)f(x) at x=1x = -100:\newlinex=1x = -111.
  7. Calculate Maximum Value: Factoring the quadratic equation, we get:\newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).Evaluating f(x)f(x) at x=1x = -100:\newlinex=1x = -111.Evaluating f(x)f(x) at x=6x = -6:\newlinex=1x = -144.
  8. Calculate Maximum Value: Factoring the quadratic equation, we get: \newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).Evaluating f(x)f(x) at x=1x = -100:\newlinex=1x = -111.Evaluating f(x)f(x) at x=6x = -6:\newlinex=1x = -144.Evaluating f(x)f(x) at x=1x = -1:\newlinex=1x = -177.
  9. Calculate Maximum Value: Factoring the quadratic equation, we get: \newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).Evaluating f(x)f(x) at x=1x = -100:\newlinex=1x = -111.Evaluating f(x)f(x) at x=6x = -6:\newlinex=1x = -144.Evaluating f(x)f(x) at x=1x = -1:\newlinex=1x = -177.Evaluating f(x)f(x) at x=1x = -199:\newlinex=6x = -600.
  10. Calculate Maximum Value: Factoring the quadratic equation, we get: \newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).Evaluating f(x)f(x) at x=1x = -100:\newlinex=1x = -111.Evaluating f(x)f(x) at x=6x = -6:\newlinex=1x = -144.Evaluating f(x)f(x) at x=1x = -1:\newlinex=1x = -177.Evaluating f(x)f(x) at x=1x = -199:\newlinex=6x = -600.Comparing the values of f(x)f(x) at x=1x = -100, x=6x = -6, x=1x = -1, and x=1x = -199, we find that the largest value is x=6x = -666.
  11. Calculate Maximum Value: Factoring the quadratic equation, we get: \newline6(x2+7x+6)=6(x+1)(x+6)=06(x^2 + 7x + 6) = 6(x + 1)(x + 6) = 0.\newlineThis gives us two critical points: x=1x = -1 and x=6x = -6.Now we evaluate the function f(x)f(x) at the critical points and at the endpoints of the interval [8,0][-8,0]:\newlinef(8)f(-8), f(6)f(-6), f(1)f(-1), and f(0)f(0).Evaluating f(x)f(x) at x=1x = -100:\newlinex=1x = -111.Evaluating f(x)f(x) at x=6x = -6:\newlinex=1x = -144.Evaluating f(x)f(x) at x=1x = -1:\newlinex=1x = -177.Evaluating f(x)f(x) at x=1x = -199:\newlinex=6x = -600.Comparing the values of f(x)f(x) at x=1x = -100, x=6x = -6, x=1x = -1, and x=1x = -199, we find that the largest value is x=6x = -666.Therefore, the absolute maximum value of the function f(x)f(x) over the closed interval [8,0][-8,0] is x=6x = -699.

More problems from Euler's method