Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Let
Q
=
{
3
,
6
,
9
,
12
}
Q = \{3, 6, 9, 12\}
Q
=
{
3
,
6
,
9
,
12
}
and
R
=
{
15
}
R = \{15\}
R
=
{
15
}
. What is
Q
∪
R
Q \cup R
Q
∪
R
?
\newline
Choices:
\newline
(A)
{
3
,
6
,
9
,
12
,
15
}
\{3, 6, 9, 12, 15\}
{
3
,
6
,
9
,
12
,
15
}
\newline
(B)
∅
\emptyset
∅
\newline
(C)
{
3
,
6
,
9
}
\{3, 6, 9\}
{
3
,
6
,
9
}
\newline
(D)
{
12
,
15
}
\{12, 15\}
{
12
,
15
}
View step-by-step help
Home
Math Problems
Calculus
Euler's method
Full solution
Q.
Let
Q
=
{
3
,
6
,
9
,
12
}
Q = \{3, 6, 9, 12\}
Q
=
{
3
,
6
,
9
,
12
}
and
R
=
{
15
}
R = \{15\}
R
=
{
15
}
. What is
Q
∪
R
Q \cup R
Q
∪
R
?
\newline
Choices:
\newline
(A)
{
3
,
6
,
9
,
12
,
15
}
\{3, 6, 9, 12, 15\}
{
3
,
6
,
9
,
12
,
15
}
\newline
(B)
∅
\emptyset
∅
\newline
(C)
{
3
,
6
,
9
}
\{3, 6, 9\}
{
3
,
6
,
9
}
\newline
(D)
{
12
,
15
}
\{12, 15\}
{
12
,
15
}
Definition of Union:
The union of two sets
Q
Q
Q
and
R
R
R
, denoted by
Q
∪
R
Q \cup R
Q
∪
R
, is the set of all elements that are in
Q
Q
Q
, or in
R
R
R
, or in both.
Set Q:
Set Q =
{
3
,
6
,
9
,
12
}
\{3, 6, 9, 12\}
{
3
,
6
,
9
,
12
}
contains the elements
3
3
3
,
6
6
6
,
9
9
9
, and
12
12
12
.
Set R:
Set
R
=
{
15
}
R = \{15\}
R
=
{
15
}
contains the single element
15
15
15
.
Finding Union
Q
∪
R
Q \cup R
Q
∪
R
:
To find the union
Q
∪
R
Q \cup R
Q
∪
R
, we combine all unique elements from both sets without repeating any elements.
Combining Elements:
Combining the elements from both sets, we get
{
3
,
6
,
9
,
12
,
15
}
\{3, 6, 9, 12, 15\}
{
3
,
6
,
9
,
12
,
15
}
.
Matching Result:
The combined set
{
3
,
6
,
9
,
12
,
15
}
\{3, 6, 9, 12, 15\}
{
3
,
6
,
9
,
12
,
15
}
matches choice (A) from the given options.
More problems from Euler's method
Question
Let
f
(
x
)
=
x
3
−
6
x
2
+
12
x
f(x)=x^{3}-6 x^{2}+12 x
f
(
x
)
=
x
3
−
6
x
2
+
12
x
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
f
f
f
on the interval
[
0
,
3
]
[0,3]
[
0
,
3
]
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D)
3
3
3
Get tutor help
Posted 1 year ago
Question
Let
g
(
x
)
=
x
3
+
12
x
2
+
36
x
g(x)=x^{3}+12 x^{2}+36 x
g
(
x
)
=
x
3
+
12
x
2
+
36
x
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
g
g
g
on the interval
−
8
≤
x
≤
−
2
-8 \leq x \leq-2
−
8
≤
x
≤
−
2
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
7
-7
−
7
\newline
(B)
−
6
-6
−
6
\newline
(C)
−
3
-3
−
3
\newline
(D)
−
1
-1
−
1
Get tutor help
Posted 1 year ago
Question
Let
h
(
x
)
=
x
3
−
6
x
2
−
10
x
h(x)=x^{3}-6 x^{2}-10 x
h
(
x
)
=
x
3
−
6
x
2
−
10
x
and let
c
c
c
be the number that satisfies the Mean Value Theorem for
h
h
h
on the interval
[
−
4
,
5
]
[-4,5]
[
−
4
,
5
]
.
\newline
What is
c
c
c
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
2
-2
−
2
\newline
(B)
−
1
-1
−
1
\newline
(C)
1
1
1
\newline
(D)
3
3
3
Get tutor help
Posted 1 year ago
Question
Let
g
(
x
)
=
2
x
3
−
21
x
2
+
60
x
g(x)=2 x^{3}-21 x^{2}+60 x
g
(
x
)
=
2
x
3
−
21
x
2
+
60
x
.
\newline
What is the absolute maximum value of
g
g
g
over the closed interval
[
0
,
6
]
[0,6]
[
0
,
6
]
?
\newline
Choose
1
1
1
answer:
\newline
(A)
25
25
25
\newline
(B)
42
42
42
\newline
(C)
36
36
36
\newline
(D)
52
52
52
Get tutor help
Posted 1 year ago
Question
Let
f
(
x
)
=
2
x
3
+
21
x
2
+
36
x
f(x)=2 x^{3}+21 x^{2}+36 x
f
(
x
)
=
2
x
3
+
21
x
2
+
36
x
.
\newline
What is the absolute maximum value of
f
f
f
over the closed interval
[
−
8
,
0
]
[-8,0]
[
−
8
,
0
]
?
\newline
Choose
1
1
1
answer:
\newline
(A)
32
32
32
\newline
(B)
180
\mathbf{1 8 0}
180
\newline
(C)
108
\mathbf{1 0 8}
108
\newline
(D)
0
0
0
Get tutor help
Posted 1 year ago
Question
Let
h
(
x
)
=
x
3
+
6
x
2
+
2
h(x)=x^{3}+6 x^{2}+2
h
(
x
)
=
x
3
+
6
x
2
+
2
.
\newline
What is the absolute minimum value of
h
h
h
over the closed interval
−
6
≤
x
≤
2
-6 \leq x \leq 2
−
6
≤
x
≤
2
?
\newline
Choose
1
1
1
answer:
\newline
(A)
34
34
34
\newline
(B)
−
34
-34
−
34
\newline
(C)
2
2
2
\newline
(D)
−
2
-2
−
2
Get tutor help
Posted 1 year ago
Question
1
,
000
=
20
z
2
1,000=20z^{2}
1
,
000
=
20
z
2
\newline
How many distinct real solutions does the given equation have?
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D)
4
4
4
Get tutor help
Posted 1 year ago
Question
Dante commutes to work
4
4
4
mornings a week. For his commute each morning, he walks for
10
10
10
minutes, waits and rides the bus for
x
x
x
minutes, and waits and rides the train for
y
y
y
minutes. If Dante spends at least
3.5
3.5
3.5
hours on his morning commute each week, which of the following inequalities best describes Dante's weekly morning commute?
\newline
Choose
1
1
1
answer:
\newline
(A)
x
+
y
+
10
≥
3.5
(
60
)
x+y+10 \geq 3.5(60)
x
+
y
+
10
≥
3.5
(
60
)
\newline
(B)
x
+
y
+
10
≥
3.5
(
60
)
(
4
)
x+y+10 \geq 3.5(60)(4)
x
+
y
+
10
≥
3.5
(
60
)
(
4
)
\newline
(C)
4
(
x
+
y
)
+
10
≥
3.5
(
60
)
4(x+y)+10 \geq 3.5(60)
4
(
x
+
y
)
+
10
≥
3.5
(
60
)
\newline
(D)
4
(
x
+
y
+
10
)
≥
3.5
(
60
)
4(x+y+10) \geq 3.5(60)
4
(
x
+
y
+
10
)
≥
3.5
(
60
)
Get tutor help
Posted 1 year ago
Question
1
3
x
+
3
y
=
4
\frac{1}{3}x+3y=4
3
1
x
+
3
y
=
4
\newline
2
x
−
4
=
2
y
2x-4=2y
2
x
−
4
=
2
y
\newline
Consider the given system of equations. If
(
x
,
y
)
(x,y)
(
x
,
y
)
is the solution to the system, then what is the value of
x
−
y
x-y
x
−
y
?
\newline
□
\square
□
Get tutor help
Posted 1 year ago
Question
Which of the following is the derivative
d
y
d
x
\frac{d y}{d x}
d
x
d
y
for the plane curve defined by the equations
x
(
t
)
=
1
2
sin
2
t
x(t)=\frac{1}{2} \sin 2 t
x
(
t
)
=
2
1
sin
2
t
,
y
(
t
)
=
2
cos
2
t
y(t)=2 \cos 2 t
y
(
t
)
=
2
cos
2
t
, and
0
≤
t
≤
2
π
0 \leq t \leq 2 \pi
0
≤
t
≤
2
π
?
\newline
Select the correct answer below:
\newline
(A)
4
cot
2
t
4 \cot 2 t
4
cot
2
t
\newline
(B)
tan
4
t
\tan 4 t
tan
4
t
\newline
(C)
−
tan
4
t
-\tan 4 t
−
tan
4
t
\newline
(D)
−
4
tan
2
t
-4 \tan 2 t
−
4
tan
2
t
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant