Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=x^(3)+12x^(2)+36 x and let 
c be the number that satisfies the Mean Value Theorem for 
g on the interval 
-8 <= x <= -2.
What is 
c ?
Choose 1 answer:
(A) -7
(B) -6
(c) -3
(b) -1

Let g(x)=x3+12x2+36xg(x)=x^{3}+12x^{2}+36x and let cc be the number that satisfies the Mean Value Theorem for gg on the interval 8x2-8 \leq x \leq -2. \newlineWhat is cc? \newlineChoose 11 answer: \newline(A) 7-7 \newline(B) 6-6 \newline(C) 3-3\newline(D) 1-1

Full solution

Q. Let g(x)=x3+12x2+36xg(x)=x^{3}+12x^{2}+36x and let cc be the number that satisfies the Mean Value Theorem for gg on the interval 8x2-8 \leq x \leq -2. \newlineWhat is cc? \newlineChoose 11 answer: \newline(A) 7-7 \newline(B) 6-6 \newline(C) 3-3\newline(D) 1-1
  1. Calculate Derivative of g(x)g(x): Calculate the derivative of g(x)g(x) to apply the Mean Value Theorem.\newlineg(x)=x3+12x2+36xg(x) = x^3 + 12x^2 + 36x\newlineg(x)=3x2+24x+36g'(x) = 3x^2 + 24x + 36
  2. Apply Mean Value Theorem: Apply the Mean Value Theorem, which states there exists a cc in (8,2)(-8, -2) such that g(8)=g(2)g'(-8) = g'(-2).\newlineCalculate g(8)g'(-8) and g(2)g'(-2):\newlineg(8)=3(8)2+24(8)+36=192192+36=36g'(-8) = 3(-8)^2 + 24(-8) + 36 = 192 - 192 + 36 = 36\newlineg(2)=3(2)2+24(2)+36=1248+36=0g'(-2) = 3(-2)^2 + 24(-2) + 36 = 12 - 48 + 36 = 0
  3. Find cc for g(8)=g(2)g'(-8) = g'(-2): Find cc such that g(8)=g(2)g'(-8) = g'(-2).\newlineSince g(8)g(2)g'(-8) \neq g'(-2), there's a mistake in the calculation of g(2)g'(-2).\newlineRecalculate g(2)g'(-2):\newlineg(2)=3(2)2+24(2)+36=1248+36=0g'(-2) = 3(-2)^2 + 24(-2) + 36 = 12 - 48 + 36 = 0

More problems from Euler's method