Let g(x)=x3+12x2+36x and let c be the number that satisfies the Mean Value Theorem for g on the interval −8≤x≤−2. What is c? Choose 1 answer: (A) −7(B) −6(C) −3(D) −1
Q. Let g(x)=x3+12x2+36x and let c be the number that satisfies the Mean Value Theorem for g on the interval −8≤x≤−2. What is c? Choose 1 answer: (A) −7(B) −6(C) −3(D) −1
Calculate Derivative of g(x): Calculate the derivative of g(x) to apply the Mean Value Theorem.g(x)=x3+12x2+36xg′(x)=3x2+24x+36
Apply Mean Value Theorem: Apply the Mean Value Theorem, which states there exists a c in (−8,−2) such that g′(−8)=g′(−2).Calculate g′(−8) and g′(−2):g′(−8)=3(−8)2+24(−8)+36=192−192+36=36g′(−2)=3(−2)2+24(−2)+36=12−48+36=0
Find c for g′(−8)=g′(−2): Find c such that g′(−8)=g′(−2).Since g′(−8)=g′(−2), there's a mistake in the calculation of g′(−2).Recalculate g′(−2):g′(−2)=3(−2)2+24(−2)+36=12−48+36=0