Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=x^(4). If five subintervals of equal length are used, what is the value of the midpoint Riemann sum approximation for 
int_(1)^(2)x^(4)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=x4 f(x)=x^{4} . If five subintervals of equal length are used, what is the value of the midpoint Riemann sum approximation for 12x4dx \int_{1}^{2} x^{4} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=x4 f(x)=x^{4} . If five subintervals of equal length are used, what is the value of the midpoint Riemann sum approximation for 12x4dx \int_{1}^{2} x^{4} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Calculate Width of Subintervals: To calculate the midpoint Riemann sum, we first need to determine the width of each subinterval. The interval [1,2][1, 2] has a length of 21=12 - 1 = 1. Since we are using five subintervals, the width (Δx)(\Delta x) of each subinterval is 15\frac{1}{5}.
  2. Find Midpoints of Subintervals: Next, we need to find the midpoints of each subinterval. The midpoints will be used to evaluate the function f(x)=x4f(x) = x^4. The midpoints are found by adding half of the width of a subinterval to the lower endpoint of each subinterval.
  3. Evaluate Function at Midpoints: The midpoints mim_i for the five subintervals are as follows:\newlinem1=1+15/2=1.1m_1 = 1 + \frac{1}{5}/2 = 1.1\newlinem2=1.2+15/2=1.3m_2 = 1.2 + \frac{1}{5}/2 = 1.3\newlinem3=1.4+15/2=1.5m_3 = 1.4 + \frac{1}{5}/2 = 1.5\newlinem4=1.6+15/2=1.7m_4 = 1.6 + \frac{1}{5}/2 = 1.7\newlinem5=1.8+15/2=1.9m_5 = 1.8 + \frac{1}{5}/2 = 1.9
  4. Perform Function Calculations: Now we evaluate the function f(x)=x4f(x) = x^4 at each midpoint: f(m1)=(1.1)4f(m_1) = (1.1)^4 f(m2)=(1.3)4f(m_2) = (1.3)^4 f(m3)=(1.5)4f(m_3) = (1.5)^4 f(m4)=(1.7)4f(m_4) = (1.7)^4 f(m5)=(1.9)4f(m_5) = (1.9)^4
  5. Calculate Riemann Sum: Perform the calculations for each f(mi)f(m_i):f(m1)=(1.1)4=1.4641f(m_1) = (1.1)^4 = 1.4641f(m2)=(1.3)4=2.8561f(m_2) = (1.3)^4 = 2.8561f(m3)=(1.5)4=5.0625f(m_3) = (1.5)^4 = 5.0625f(m4)=(1.7)4=8.3521f(m_4) = (1.7)^4 = 8.3521f(m5)=(1.9)4=13.0321f(m_5) = (1.9)^4 = 13.0321
  6. Substitute Values into Formula: The midpoint Riemann sum approximation is the sum of the function values at the midpoints multiplied by the width of the subintervals (Δx\Delta x):
    Riemann sum = Δx(f(m1)+f(m2)+f(m3)+f(m4)+f(m5))\Delta x \cdot (f(m_1) + f(m_2) + f(m_3) + f(m_4) + f(m_5))
  7. Calculate Riemann Sum: Substitute the values we have calculated into the Riemann sum formula:\newlineRiemann sum = (15)×(1.4641+2.8561+5.0625+8.3521+13.0321)(\frac{1}{5}) \times (1.4641 + 2.8561 + 5.0625 + 8.3521 + 13.0321)
  8. Round Riemann Sum: Calculate the Riemann sum:\newlineRiemann sum = (15)×(30.7669)(\frac{1}{5}) \times (30.7669)\newlineRiemann sum = 6.153386.15338
  9. Round Riemann Sum: Calculate the Riemann sum:\newlineRiemann sum = (15)×(30.7669)(\frac{1}{5}) \times (30.7669)\newlineRiemann sum = 6.153386.15338Round the Riemann sum to the nearest thousandth:\newlineRiemann sum 6.153\approx 6.153

More problems from Find indefinite integrals using the substitution and by parts