Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=x^(2). If four subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 
int_(2)^(3)x^(2)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=x2 f(x)=x^{2} . If four subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 23x2dx \int_{2}^{3} x^{2} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=x2 f(x)=x^{2} . If four subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 23x2dx \int_{2}^{3} x^{2} d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Determine Subinterval Width: To use the trapezoidal rule, we first need to determine the width of each subinterval. The interval from 22 to 33 has a length of 11. Since we are using four subintervals, each subinterval will have a width of 14\frac{1}{4}.\newlineCalculation: (32)/4=14(3 - 2) / 4 = \frac{1}{4}
  2. Calculate Function Values: Next, we need to calculate the values of the function f(x)=x2f(x) = x^2 at the endpoints of each subinterval. These points are x=2x = 2, x=2.25x = 2.25, x=2.5x = 2.5, x=2.75x = 2.75, and x=3x = 3. Calculation: f(2)=22=4f(2) = 2^2 = 4, f(2.25)=2.252=5.0625f(2.25) = 2.25^2 = 5.0625, f(2.5)=2.52=6.25f(2.5) = 2.5^2 = 6.25, f(2.75)=2.752=7.5625f(2.75) = 2.75^2 = 7.5625, x=2x = 200
  3. Apply Trapezoidal Rule: Now we apply the trapezoidal rule, which is given by the formula:\newlineTrapezoidal Sum =width2(f(x0)+2f(x1)+2f(x2)+2f(x3)+f(x4))= \frac{\text{width}}{2} \cdot (f(x_0) + 2\cdot f(x_1) + 2\cdot f(x_2) + 2\cdot f(x_3) + f(x_4))\newlinewhere x0x_0, x1x_1, x2x_2, x3x_3, and x4x_4 are the endpoints of the subintervals.
  4. Plug in Values: Plugging in the values we have:\newlineTrapezoidal Sum = (14/2)×(f(2)+2×f(2.25)+2×f(2.5)+2×f(2.75)+f(3))(\frac{1}{4}/2) \times (f(2) + 2\times f(2.25) + 2\times f(2.5) + 2\times f(2.75) + f(3))\newlineTrapezoidal Sum = (18)×(4+2×5.0625+2×6.25+2×7.5625+9)(\frac{1}{8}) \times (4 + 2\times 5.0625 + 2\times 6.25 + 2\times 7.5625 + 9)
  5. Perform Calculations: Performing the calculations:\newlineTrapezoidal Sum = (18)×(4+10.125+12.5+15.125+9)(\frac{1}{8}) \times (4 + 10.125 + 12.5 + 15.125 + 9)\newlineTrapezoidal Sum = (18)×50.75(\frac{1}{8}) \times 50.75\newlineTrapezoidal Sum = 66.3437534375
  6. Round to Nearest Thousandth: Rounding to the nearest thousandth, we get: Trapezoidal Sum 6.344\approx 6.344