Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=5ln(x). If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 
int_(3)^(7.5)5ln(x)dx? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=5ln(x) f(x)=5 \ln (x) . If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 37.55ln(x)dx? \int_{3}^{7.5} 5 \ln (x) d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=5ln(x) f(x)=5 \ln (x) . If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for 37.55ln(x)dx? \int_{3}^{7.5} 5 \ln (x) d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Calculate Width of Subintervals: Determine the width of each subinterval.\newlineSince we are using three subintervals of equal length from 33 to 7.57.5, we calculate the width (hh) as follows:\newlineh=(7.53)/3h = (7.5 - 3) / 3\newlineh=4.5/3h = 4.5 / 3\newlineh=1.5h = 1.5
  2. Identify xx-Values for Subintervals: Identify the xx-values for the subintervals.\newlineThe xx-values at the endpoints of the subintervals are:\newlinex0=3x_0 = 3\newlinex1=3+1.5=4.5x_1 = 3 + 1.5 = 4.5\newlinex2=4.5+1.5=6x_2 = 4.5 + 1.5 = 6\newlinex3=6+1.5=7.5x_3 = 6 + 1.5 = 7.5
  3. Calculate Function Values: Calculate the function values at the x-values.\newlinef(x)=5ln(x)f(x) = 5\ln(x), so we calculate f(x)f(x) for each x-value:\newlinef(x0)=5ln(3)f(x_0) = 5\ln(3)\newlinef(x1)=5ln(4.5)f(x_1) = 5\ln(4.5)\newlinef(x2)=5ln(6)f(x_2) = 5\ln(6)\newlinef(x3)=5ln(7.5)f(x_3) = 5\ln(7.5)
  4. Apply Trapezoidal Sum Formula: Apply the trapezoidal sum formula.\newlineThe trapezoidal sum TT is given by:\newlineT=(h2)[f(x0)+2f(x1)+2f(x2)+f(x3)]T = \left(\frac{h}{2}\right) \cdot \left[f(x_0) + 2f(x_1) + 2f(x_2) + f(x_3)\right]\newlineSubstitute the function values and hh into the formula:\newlineT=(1.52)[5ln(3)+25ln(4.5)+25ln(6)+5ln(7.5)]T = \left(\frac{1.5}{2}\right) \cdot \left[5\ln(3) + 2\cdot 5\ln(4.5) + 2\cdot 5\ln(6) + 5\ln(7.5)\right]
  5. Perform Calculations: Perform the calculations.\newlineT=(0.75)×[5ln(3)+10ln(4.5)+10ln(6)+5ln(7.5)]T = (0.75) \times [5\ln(3) + 10\ln(4.5) + 10\ln(6) + 5\ln(7.5)]\newlineT=0.75×[15.104412573+32.2361913+35.67926935+20.79441567]T = 0.75 \times [15.104412573 + 32.2361913 + 35.67926935 + 20.79441567]\newlineT=0.75×[103.8142889]T = 0.75 \times [103.8142889]\newlineT77.86071668T \approx 77.86071668\newlineRound to the nearest thousandth:\newlineT77.861T \approx 77.861