Let f be the function defined by f(x)=5ln(x). If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for ∫37.55ln(x)dx? Round to the nearest thousandth if necessary.Answer:
Q. Let f be the function defined by f(x)=5ln(x). If three subintervals of equal length are used, what is the value of the trapezoidal sum approximation for ∫37.55ln(x)dx? Round to the nearest thousandth if necessary.Answer:
Calculate Width of Subintervals: Determine the width of each subinterval.Since we are using three subintervals of equal length from 3 to 7.5, we calculate the width (h) as follows:h=(7.5−3)/3h=4.5/3h=1.5
Identify x-Values for Subintervals: Identify the x-values for the subintervals.The x-values at the endpoints of the subintervals are:x0=3x1=3+1.5=4.5x2=4.5+1.5=6x3=6+1.5=7.5
Calculate Function Values: Calculate the function values at the x-values.f(x)=5ln(x), so we calculate f(x) for each x-value:f(x0)=5ln(3)f(x1)=5ln(4.5)f(x2)=5ln(6)f(x3)=5ln(7.5)
Apply Trapezoidal Sum Formula: Apply the trapezoidal sum formula.The trapezoidal sum T is given by:T=(2h)⋅[f(x0)+2f(x1)+2f(x2)+f(x3)]Substitute the function values and h into the formula:T=(21.5)⋅[5ln(3)+2⋅5ln(4.5)+2⋅5ln(6)+5ln(7.5)]
Perform Calculations: Perform the calculations.T=(0.75)×[5ln(3)+10ln(4.5)+10ln(6)+5ln(7.5)]T=0.75×[15.104412573+32.2361913+35.67926935+20.79441567]T=0.75×[103.8142889]T≈77.86071668Round to the nearest thousandth:T≈77.861
More problems from Find indefinite integrals using the substitution and by parts