Let f be the function defined by f(x)=3ln(x). If six subintervals of equal length are used, what is the value of the left Riemann sum approximation for ∫143ln(x)dx ? Round to the nearest thousandth if necessary.Answer:
Q. Let f be the function defined by f(x)=3ln(x). If six subintervals of equal length are used, what is the value of the left Riemann sum approximation for ∫143ln(x)dx ? Round to the nearest thousandth if necessary.Answer:
Determine Subinterval Width: To approximate the integral of f(x)=3ln(x) from 1 to 4 using a left Riemann sum with six subintervals, we first need to determine the width of each subinterval. The interval [1,4] has a length of 4−1=3. Dividing this interval into six equal parts gives us a subinterval width of 63=0.5.
Identify Left Endpoints: Next, we identify the x-values at the left endpoints of each subinterval. Starting from x=1, we increase by the subinterval width of 0.5 until we reach just below the upper limit of 4. The left endpoints are therefore x=1,1.5,2,2.5,3, and 3.5.
Evaluate Function Values: Now we evaluate the function f(x)=3ln(x) at each of these left endpoints. This gives us the following values:f(1)=3ln(1)=0,f(1.5)=3ln(1.5),f(2)=3ln(2),f(2.5)=3ln(2.5),f(3)=3ln(3),f(3.5)=3ln(3.5).
Calculate Areas of Rectangles: We then multiply each function value by the width of the subintervals (0.5) to get the area of each rectangle in the Riemann sum approximation. This results in the following areas:A1=0.5×f(1)=0,A2=0.5×f(1.5),A3=0.5×f(2),A4=0.5×f(2.5),A5=0.5×f(3),A6=0.5×f(3.5).
Sum All Areas: We calculate the areas using the function values from the previous step:A2=0.5×3ln(1.5)=1.5ln(1.5),A3=0.5×3ln(2)=1.5ln(2),A4=0.5×3ln(2.5)=1.5ln(2.5),A5=0.5×3ln(3)=1.5ln(3),A6=0.5×3ln(3.5)=1.5ln(3.5).
Calculate Left Riemann Sum: Finally, we sum all the areas to get the left Riemann sum approximation:LRS=A1+A2+A3+A4+A5+A6LRS=0+1.5ln(1.5)+1.5ln(2)+1.5ln(2.5)+1.5ln(3)+1.5ln(3.5).
Calculate Left Riemann Sum: Finally, we sum all the areas to get the left Riemann sum approximation: LRS=A1+A2+A3+A4+A5+A6LRS=0+1.5ln(1.5)+1.5ln(2)+1.5ln(2.5)+1.5ln(3)+1.5ln(3.5).We perform the calculations to find the numerical value of the left Riemann sum:LRS≈1.5ln(1.5)+1.5ln(2)+1.5ln(2.5)+1.5ln(3)+1.5ln(3.5)LRS≈1.5(0.4055)+1.5(0.6931)+1.5(0.9163)+1.5(1.0986)+1.5(1.2528)LRS≈0.6083+1.0397+1.3745+1.6479+1.8792LRS≈6.5496
More problems from Find indefinite integrals using the substitution and by parts