Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f be the function defined by 
f(x)=3ln(x). If six subintervals of equal length are used, what is the value of the left Riemann sum approximation for 
int_(1)^(4)3ln(x)dx ? Round to the nearest thousandth if necessary.
Answer:

Let f f be the function defined by f(x)=3ln(x) f(x)=3 \ln (x) . If six subintervals of equal length are used, what is the value of the left Riemann sum approximation for 143ln(x)dx \int_{1}^{4} 3 \ln (x) d x ? Round to the nearest thousandth if necessary.\newlineAnswer:

Full solution

Q. Let f f be the function defined by f(x)=3ln(x) f(x)=3 \ln (x) . If six subintervals of equal length are used, what is the value of the left Riemann sum approximation for 143ln(x)dx \int_{1}^{4} 3 \ln (x) d x ? Round to the nearest thousandth if necessary.\newlineAnswer:
  1. Determine Subinterval Width: To approximate the integral of f(x)=3ln(x)f(x) = 3\ln(x) from 11 to 44 using a left Riemann sum with six subintervals, we first need to determine the width of each subinterval. The interval [1,4][1, 4] has a length of 41=34 - 1 = 3. Dividing this interval into six equal parts gives us a subinterval width of 36=0.5\frac{3}{6} = 0.5.
  2. Identify Left Endpoints: Next, we identify the xx-values at the left endpoints of each subinterval. Starting from x=1x = 1, we increase by the subinterval width of 0.50.5 until we reach just below the upper limit of 44. The left endpoints are therefore x=1,1.5,2,2.5,3,x = 1, 1.5, 2, 2.5, 3, and 3.53.5.
  3. Evaluate Function Values: Now we evaluate the function f(x)=3ln(x)f(x) = 3\ln(x) at each of these left endpoints. This gives us the following values:\newlinef(1)=3ln(1)=0f(1) = 3\ln(1) = 0,\newlinef(1.5)=3ln(1.5)f(1.5) = 3\ln(1.5),\newlinef(2)=3ln(2)f(2) = 3\ln(2),\newlinef(2.5)=3ln(2.5)f(2.5) = 3\ln(2.5),\newlinef(3)=3ln(3)f(3) = 3\ln(3),\newlinef(3.5)=3ln(3.5)f(3.5) = 3\ln(3.5).
  4. Calculate Areas of Rectangles: We then multiply each function value by the width of the subintervals (0.50.5) to get the area of each rectangle in the Riemann sum approximation. This results in the following areas:\newlineA1=0.5×f(1)=0A_1 = 0.5 \times f(1) = 0,\newlineA2=0.5×f(1.5)A_2 = 0.5 \times f(1.5),\newlineA3=0.5×f(2)A_3 = 0.5 \times f(2),\newlineA4=0.5×f(2.5)A_4 = 0.5 \times f(2.5),\newlineA5=0.5×f(3)A_5 = 0.5 \times f(3),\newlineA6=0.5×f(3.5)A_6 = 0.5 \times f(3.5).
  5. Sum All Areas: We calculate the areas using the function values from the previous step:\newlineA2=0.5×3ln(1.5)=1.5ln(1.5)A_2 = 0.5 \times 3\ln(1.5) = 1.5\ln(1.5),\newlineA3=0.5×3ln(2)=1.5ln(2)A_3 = 0.5 \times 3\ln(2) = 1.5\ln(2),\newlineA4=0.5×3ln(2.5)=1.5ln(2.5)A_4 = 0.5 \times 3\ln(2.5) = 1.5\ln(2.5),\newlineA5=0.5×3ln(3)=1.5ln(3)A_5 = 0.5 \times 3\ln(3) = 1.5\ln(3),\newlineA6=0.5×3ln(3.5)=1.5ln(3.5)A_6 = 0.5 \times 3\ln(3.5) = 1.5\ln(3.5).
  6. Calculate Left Riemann Sum: Finally, we sum all the areas to get the left Riemann sum approximation:\newlineLRS=A1+A2+A3+A4+A5+A6LRS = A_1 + A_2 + A_3 + A_4 + A_5 + A_6\newlineLRS=0+1.5ln(1.5)+1.5ln(2)+1.5ln(2.5)+1.5ln(3)+1.5ln(3.5)LRS = 0 + 1.5\ln(1.5) + 1.5\ln(2) + 1.5\ln(2.5) + 1.5\ln(3) + 1.5\ln(3.5).
  7. Calculate Left Riemann Sum: Finally, we sum all the areas to get the left Riemann sum approximation: \newlineLRS=A1+A2+A3+A4+A5+A6LRS = A_1 + A_2 + A_3 + A_4 + A_5 + A_6\newlineLRS=0+1.5ln(1.5)+1.5ln(2)+1.5ln(2.5)+1.5ln(3)+1.5ln(3.5).LRS = 0 + 1.5\ln(1.5) + 1.5\ln(2) + 1.5\ln(2.5) + 1.5\ln(3) + 1.5\ln(3.5).We perform the calculations to find the numerical value of the left Riemann sum:\newlineLRS1.5ln(1.5)+1.5ln(2)+1.5ln(2.5)+1.5ln(3)+1.5ln(3.5)LRS \approx 1.5\ln(1.5) + 1.5\ln(2) + 1.5\ln(2.5) + 1.5\ln(3) + 1.5\ln(3.5)\newlineLRS1.5(0.4055)+1.5(0.6931)+1.5(0.9163)+1.5(1.0986)+1.5(1.2528)LRS \approx 1.5(0.4055) + 1.5(0.6931) + 1.5(0.9163) + 1.5(1.0986) + 1.5(1.2528)\newlineLRS0.6083+1.0397+1.3745+1.6479+1.8792LRS \approx 0.6083 + 1.0397 + 1.3745 + 1.6479 + 1.8792\newlineLRS6.5496LRS \approx 6.5496