Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

3x2dx\int 3x^{-2}\,dx

Full solution

Q. 3x2dx\int 3x^{-2}\,dx
  1. Write Integral: Write down the integral to be solved.\newlineI=3x2dxI = \int 3x^{-2}\,dx
  2. Simplify Integral: Simplify the integral. I=3x2dxI = 3\int x^{-2}\,dx
  3. Recall Power Rule: Recall the power rule for integration, xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1.
  4. Apply Power Rule: Apply the power rule to the integral.\newlineI=3(x(2+1)(2+1))+CI = 3\left(\frac{x^{(-2+1)}}{(-2+1)}\right) + C\newlineI=3(x(1)(1))+CI = 3\left(\frac{x^{(-1)}}{(-1)}\right) + C
  5. Simplify Expression: Simplify the expression.\newlineI=3x1+CI = -3x^{-1} + C\newlineI=3x+CI = -\frac{3}{x} + C
  6. Final Answer: Write the final answer.\newlineThe indefinite integral of 3x23x^{-2} with respect to xx is 3x+C-\frac{3}{x} + C.