Identify Substitution: Given the integral to solve:∫3t−4(2+4t−3)−3dtIdentify a substitution that can simplify the integral.Let u=2+4t−3. Then, differentiate u with respect to t to find du.dtdu=−12t−4du=−12t−4dt
Find du: Solve for dt in terms of du and t.dt=−12t−4duNow, substitute u and dt into the integral.∫3t−4(2+4t−3)−3dt=∫3t−4u−3(−12t−4du)=∫4−1u−3du
Substitute u and dt: Integrate 4−1u−3 with respect to u.∫4−1u−3du=4−1∫u−3du=4−1(−2u−2)+C=81u−2+C
Integrate with u: Substitute back the original expression for u in terms of t.u=2+4t−381u−2+C=81(2+4t−3)−2+C