Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Integrate.
int3t^(-4)(2+4t^(-3))^(-3)

Integrate.\newline3t4(2+4t3)3\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-3}

Full solution

Q. Integrate.\newline3t4(2+4t3)3\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-3}
  1. Identify Substitution: Given the integral to solve:\newline3t4(2+4t3)3dt \int 3t^{-4}(2+4t^{-3})^{-3} \, dt \newlineIdentify a substitution that can simplify the integral.\newlineLet u=2+4t3 u = 2+4t^{-3} . Then, differentiate u u with respect to t t to find du du .\newlinedudt=12t4 \frac{du}{dt} = -12t^{-4} \newlinedu=12t4dt du = -12t^{-4} \, dt
  2. Find du: Solve for dt dt in terms of du du and t t .\newlinedt=du12t4 dt = \frac{du}{-12t^{-4}} \newlineNow, substitute u u and dt dt into the integral.\newline3t4(2+4t3)3dt=3t4u3(du12t4) \int 3t^{-4}(2+4t^{-3})^{-3} \, dt = \int 3t^{-4}u^{-3} \left( \frac{du}{-12t^{-4}} \right) \newline=14u3du = \int \frac{-1}{4}u^{-3} \, du
  3. Substitute u and dt: Integrate 14u3 \frac{-1}{4}u^{-3} with respect to u u .\newline14u3du=14u3du \int \frac{-1}{4}u^{-3} \, du = \frac{-1}{4} \int u^{-3} \, du \newline=14(u22)+C = \frac{-1}{4} \left( \frac{u^{-2}}{-2} \right) + C \newline=18u2+C = \frac{1}{8}u^{-2} + C
  4. Integrate with u: Substitute back the original expression for u u in terms of t t .\newlineu=2+4t3 u = 2+4t^{-3} \newline18u2+C=18(2+4t3)2+C \frac{1}{8}u^{-2} + C = \frac{1}{8}(2+4t^{-3})^{-2} + C