Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int3t^(-4)(2+4t^(-3))^(-3)

3t4(2+4t3)3 \int 3 t^{-4}\left(2+4 t^{-3}\right)^{-3}

Full solution

Q. 3t4(2+4t3)3 \int 3 t^{-4}\left(2+4 t^{-3}\right)^{-3}
  1. Identify inner function: Given the integral to solve:\newlineI=3t4(2+4t3)3dtI = \int 3t^{-4}(2+4t^{-3})^{-3} \, dt\newlineIdentify the inner function for substitution.\newlineLet u=2+4t3u = 2 + 4t^{-3}
  2. Differentiate uu: Differentiate uu with respect to tt to find dudt\frac{du}{dt}.dudt=ddt(2+4t3)=012t4=12t4\frac{du}{dt} = \frac{d}{dt} (2 + 4t^{-3}) = 0 - 12t^{-4} = -12t^{-4}
  3. Solve for dtdt: Solve for dtdt in terms of dudu and tt.dt=du(12t4)dt = \frac{du}{(-12t^{-4})}
  4. Substitute uu and dtdt: Substitute uu and dtdt into the integral.\newlineI=3t4(u)3(du12t4)I = \int 3t^{-4}(u)^{-3} * (\frac{du}{-12t^{-4}})\newline =14u3du= \int -\frac{1}{4} * u^{-3} du
  5. Integrate with respect: Integrate with respect to uu.
    I=14u3duI = -\frac{1}{4} \int u^{-3} \, du
    =14(12)u2= -\frac{1}{4} \cdot (-\frac{1}{2}) \cdot u^{-2}
    =18u2= \frac{1}{8} \cdot u^{-2}
  6. Substitute back for u: Substitute back for u to get the integral in terms of tt.I=18×(2+4t3)2I = \frac{1}{8} \times \left(2 + 4t^{-3}\right)^{-2}
  7. Add constant of integration: Add the constant of integration CC to the result.I=18(2+4t3)2+CI = \frac{1}{8} \cdot (2 + 4t^{-3})^{-2} + C