Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
∫
3
t
−
4
(
2
+
4
t
−
3
)
−
3
\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-3}
∫
3
t
−
4
(
2
+
4
t
−
3
)
−
3
View step-by-step help
Home
Math Problems
Calculus
Gaussian integral
Full solution
Q.
∫
3
t
−
4
(
2
+
4
t
−
3
)
−
3
\int 3 t^{-4}\left(2+4 t^{-3}\right)^{-3}
∫
3
t
−
4
(
2
+
4
t
−
3
)
−
3
Identify inner function:
Given the integral to solve:
\newline
I
=
∫
3
t
−
4
(
2
+
4
t
−
3
)
−
3
d
t
I = \int 3t^{-4}(2+4t^{-3})^{-3} \, dt
I
=
∫
3
t
−
4
(
2
+
4
t
−
3
)
−
3
d
t
\newline
Identify the inner function for substitution.
\newline
Let
u
=
2
+
4
t
−
3
u = 2 + 4t^{-3}
u
=
2
+
4
t
−
3
Differentiate
u
u
u
:
Differentiate
u
u
u
with respect to
t
t
t
to find
d
u
d
t
\frac{du}{dt}
d
t
d
u
.
d
u
d
t
=
d
d
t
(
2
+
4
t
−
3
)
=
0
−
12
t
−
4
=
−
12
t
−
4
\frac{du}{dt} = \frac{d}{dt} (2 + 4t^{-3}) = 0 - 12t^{-4} = -12t^{-4}
d
t
d
u
=
d
t
d
(
2
+
4
t
−
3
)
=
0
−
12
t
−
4
=
−
12
t
−
4
Solve for
d
t
dt
d
t
:
Solve for
d
t
dt
d
t
in terms of
d
u
du
d
u
and
t
t
t
.
d
t
=
d
u
(
−
12
t
−
4
)
dt = \frac{du}{(-12t^{-4})}
d
t
=
(
−
12
t
−
4
)
d
u
Substitute
u
u
u
and
d
t
dt
d
t
:
Substitute
u
u
u
and
d
t
dt
d
t
into the integral.
\newline
I
=
∫
3
t
−
4
(
u
)
−
3
∗
(
d
u
−
12
t
−
4
)
I = \int 3t^{-4}(u)^{-3} * (\frac{du}{-12t^{-4}})
I
=
∫
3
t
−
4
(
u
)
−
3
∗
(
−
12
t
−
4
d
u
)
\newline
=
∫
−
1
4
∗
u
−
3
d
u
= \int -\frac{1}{4} * u^{-3} du
=
∫
−
4
1
∗
u
−
3
d
u
Integrate with respect:
Integrate with respect to
u
u
u
.
I
=
−
1
4
∫
u
−
3
d
u
I = -\frac{1}{4} \int u^{-3} \, du
I
=
−
4
1
∫
u
−
3
d
u
=
−
1
4
⋅
(
−
1
2
)
⋅
u
−
2
= -\frac{1}{4} \cdot (-\frac{1}{2}) \cdot u^{-2}
=
−
4
1
⋅
(
−
2
1
)
⋅
u
−
2
=
1
8
⋅
u
−
2
= \frac{1}{8} \cdot u^{-2}
=
8
1
⋅
u
−
2
Substitute back for u:
Substitute back for u to get the integral in terms of
t
t
t
.
I
=
1
8
×
(
2
+
4
t
−
3
)
−
2
I = \frac{1}{8} \times \left(2 + 4t^{-3}\right)^{-2}
I
=
8
1
×
(
2
+
4
t
−
3
)
−
2
Add constant of integration:
Add the constant of integration
C
C
C
to the result.
I
=
1
8
⋅
(
2
+
4
t
−
3
)
−
2
+
C
I = \frac{1}{8} \cdot (2 + 4t^{-3})^{-2} + C
I
=
8
1
⋅
(
2
+
4
t
−
3
)
−
2
+
C
More problems from Gaussian integral
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant