Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(x)/(sqrt(9-4x^(2)))dx

x94x2dx \int \frac{x}{\sqrt{9-4 x^{2}}} d x

Full solution

Q. x94x2dx \int \frac{x}{\sqrt{9-4 x^{2}}} d x
  1. Identify Integral: Identify the integral to be solved.\newlineWe need to find the indefinite integral of the function I=x94x2dxI = \int\frac{x}{\sqrt{9-4x^2}} \, dx.
  2. Trigonometric Substitution: Use a trigonometric substitution to simplify the integral.\newlineLet x=32sin(θ)x = \frac{3}{2}\sin(\theta), which implies dx=32cos(θ)dθdx = \frac{3}{2}\cos(\theta) d\theta. Then, 94x2=94(32)2sin2(θ)=99sin2(θ)=9cos2(θ)9 - 4x^2 = 9 - 4\left(\frac{3}{2}\right)^2\sin^2(\theta) = 9 - 9\sin^2(\theta) = 9\cos^2(\theta).
  3. Substitute Trigonometric Expressions: Substitute xx and dxdx in the integral with the trigonometric expressions.I=(32)sin(θ)(32)cos(θ)dθ/9cos2(θ)I = \int\left(\frac{3}{2}\right)\sin(\theta) \cdot \left(\frac{3}{2}\right)\cos(\theta) d\theta / \sqrt{9\cos^2(\theta)}
  4. Simplify Integral: Simplify the integral.\newlineI=(32)2sin(θ)cos(θ)dθ/(3cos(θ))I = \int\left(\frac{3}{2}\right)^2\sin(\theta)\cos(\theta) d\theta / \left(3|\cos(\theta)|\right)\newlineSince cos(θ)\cos(\theta) is always positive for θ\theta in the range (π/2,π/2)(-\pi/2, \pi/2), which corresponds to the range of arcsin(x3/2)\arcsin\left(\frac{x}{3/2}\right), we can remove the absolute value.\newlineI=(94)sin(θ)cos(θ)dθ/(3cos(θ))I = \int\left(\frac{9}{4}\right)\sin(\theta)\cos(\theta) d\theta / \left(3\cos(\theta)\right)\newlineI=(34)sin(θ)dθI = \left(\frac{3}{4}\right)\int\sin(\theta) d\theta
  5. Integrate with Respect: Integrate with respect to θ\theta.I=(34)(cos(θ))+CI = \left(\frac{3}{4}\right)(-\cos(\theta)) + C, where CC is the constant of integration.
  6. Substitute Back Variable: Substitute back the original variable xx.\newlineSince x=32sin(θ)x = \frac{3}{2}\sin(\theta), we have sin(θ)=x32=23x\sin(\theta) = \frac{x}{\frac{3}{2}} = \frac{2}{3}x. To find cos(θ)\cos(\theta), we use the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1.\newlinecos(θ)=1sin2(θ)=1(23)2x2=149x2=94x29=94x23\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{2}{3}\right)^2x^2} = \sqrt{1 - \frac{4}{9}x^2} = \sqrt{\frac{9 - 4x^2}{9}} = \frac{\sqrt{9 - 4x^2}}{3}.
  7. Replace Cosine in Integral: Replace cos(θ)\cos(\theta) in the integral result.I=(34)(94x2/3)+CI = \left(\frac{3}{4}\right)\left(-\sqrt{9 - 4x^2}/3\right) + CI=1494x2+CI = -\frac{1}{4} \sqrt{9 - 4x^2} + C