Identify Integral: Identify the integral to be solved.We need to find the indefinite integral of the function I=∫9−4x2xdx.
Trigonometric Substitution: Use a trigonometric substitution to simplify the integral.Let x=23sin(θ), which implies dx=23cos(θ)dθ. Then, 9−4x2=9−4(23)2sin2(θ)=9−9sin2(θ)=9cos2(θ).
Substitute Trigonometric Expressions: Substitute x and dx in the integral with the trigonometric expressions.I=∫(23)sin(θ)⋅(23)cos(θ)dθ/9cos2(θ)
Simplify Integral: Simplify the integral.I=∫(23)2sin(θ)cos(θ)dθ/(3∣cos(θ)∣)Since cos(θ) is always positive for θ in the range (−π/2,π/2), which corresponds to the range of arcsin(3/2x), we can remove the absolute value.I=∫(49)sin(θ)cos(θ)dθ/(3cos(θ))I=(43)∫sin(θ)dθ
Integrate with Respect: Integrate with respect to θ.I=(43)(−cos(θ))+C, where C is the constant of integration.
Substitute Back Variable: Substitute back the original variable x.Since x=23sin(θ), we have sin(θ)=23x=32x. To find cos(θ), we use the Pythagorean identity sin2(θ)+cos2(θ)=1.cos(θ)=1−sin2(θ)=1−(32)2x2=1−94x2=99−4x2=39−4x2.
Replace Cosine in Integral: Replace cos(θ) in the integral result.I=(43)(−9−4x2/3)+CI=−419−4x2+C
More problems from Find indefinite integrals using the substitution and by parts