Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x23x+5xdx\int \frac{x^{2}-3x+5}{\sqrt{x}} \, dx

Full solution

Q. x23x+5xdx\int \frac{x^{2}-3x+5}{\sqrt{x}} \, dx
  1. Break into separate terms: Let's start by simplifying the integral by breaking it into separate terms that can be integrated individually.\newlineI=(x23x+5x)dxI = \int(\frac{x^2 - 3x + 5}{\sqrt{x}}) \, dx\newlineI=x32dx3x12dx+5x12dxI = \int x^{\frac{3}{2}} \, dx - 3\int x^{\frac{1}{2}} \, dx + 5\int x^{-\frac{1}{2}} \, dx
  2. Integrate each term: Now we will integrate each term separately using the power rule for integration, which states that xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where n1n \neq -1.
    First term: x32dx=25x52+C1\int x^{\frac{3}{2}} \, dx = \frac{2}{5}x^{\frac{5}{2}} + C_1
    Second term: 3x12dx=3(23x32)+C2-3\int x^{\frac{1}{2}} \, dx = -3\left(\frac{2}{3}x^{\frac{3}{2}}\right) + C_2
    Third term: 5x12dx=5(2)x12+C35\int x^{-\frac{1}{2}} \, dx = 5(2)x^{\frac{1}{2}} + C_3
  3. Simplify constants and combine: Now we will simplify the constants and combine the terms.\newlineFirst term: (25)x(52)+C1(\frac{2}{5})x^{(\frac{5}{2})} + C_1\newlineSecond term: 2x(32)+C2-2x^{(\frac{3}{2})} + C_2\newlineThird term: 10x(12)+C310x^{(\frac{1}{2})} + C_3
  4. Combine constants into single constant: Combine the constants C1C_1, C2C_2, and C3C_3 into a single constant CC, since the sum of constants is also a constant.\newlineI=25x522x32+10x12+CI = \frac{2}{5}x^{\frac{5}{2}} - 2x^{\frac{3}{2}} + 10x^{\frac{1}{2}} + C
  5. Find indefinite integral: We have found the indefinite integral of the function.\newlineFinal answer: I=25x522x32+10x12+CI = \frac{2}{5}x^{\frac{5}{2}} - 2x^{\frac{3}{2}} + 10x^{\frac{1}{2}} + C