Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

t1+t2dt \int t\sqrt{1+t^{2}}\,dt

Full solution

Q. t1+t2dt \int t\sqrt{1+t^{2}}\,dt
  1. Identify integral: Identify the integral to be solved.\newlineWe have the integral t1+t2dt\int t\sqrt{1+t^{2}}\,dt, which we need to solve.
  2. Use substitution: Use a substitution to simplify the integral.\newlineLet u=1+t2u = 1 + t^2. Then, dudt=2t\frac{du}{dt} = 2t, which implies that (12)du=tdt(\frac{1}{2})du = tdt.
  3. Rewrite in terms of uu: Rewrite the integral in terms of uu. Substituting the values from the substitution, we get (1/2)udu(1/2)\int \sqrt{u}\,du.
  4. Integrate with respect to uu: Integrate with respect to uu. The integral of u\sqrt{u} with respect to uu is 23u32\frac{2}{3}u^{\frac{3}{2}}. Therefore, 12udu=1223u32+C\frac{1}{2}\int \sqrt{u}\,du = \frac{1}{2}\cdot\frac{2}{3}u^{\frac{3}{2}} + C.
  5. Substitute back in tt: Substitute back in terms of tt.\newlineSince u=1+t2u = 1 + t^2, we have (1/2)(2/3)(1+t2)3/2+C=(1/3)(1+t2)3/2+C(1/2)\cdot(2/3)\cdot(1 + t^2)^{3/2} + C = (1/3)\cdot(1 + t^2)^{3/2} + C.
  6. Write final answer: Write the final answer.\newlineThe indefinite integral of t1+t2t\sqrt{1+t^{2}} with respect to tt is (13)(1+t2)(32)+C(\frac{1}{3})(1 + t^2)^{(\frac{3}{2})} + C.