Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
∫
t
1
+
t
2
d
t
\int t\sqrt{1+t^{2}}\,dt
∫
t
1
+
t
2
d
t
View step-by-step help
Home
Math Problems
Calculus
Find indefinite integrals using the substitution
Full solution
Q.
∫
t
1
+
t
2
d
t
\int t\sqrt{1+t^{2}}\,dt
∫
t
1
+
t
2
d
t
Identify integral:
Identify the integral to be solved.
\newline
We have the integral
∫
t
1
+
t
2
d
t
\int t\sqrt{1+t^{2}}\,dt
∫
t
1
+
t
2
d
t
, which we need to solve.
Use substitution:
Use a substitution to simplify the integral.
\newline
Let
u
=
1
+
t
2
u = 1 + t^2
u
=
1
+
t
2
. Then,
d
u
d
t
=
2
t
\frac{du}{dt} = 2t
d
t
d
u
=
2
t
, which implies that
(
1
2
)
d
u
=
t
d
t
(\frac{1}{2})du = tdt
(
2
1
)
d
u
=
t
d
t
.
Rewrite in terms of
u
u
u
:
Rewrite the integral in terms of
u
u
u
. Substituting the values from the substitution, we get
(
1
/
2
)
∫
u
d
u
(1/2)\int \sqrt{u}\,du
(
1/2
)
∫
u
d
u
.
Integrate with respect to
u
u
u
:
Integrate with respect to
u
u
u
. The integral of
u
\sqrt{u}
u
with respect to
u
u
u
is
2
3
u
3
2
\frac{2}{3}u^{\frac{3}{2}}
3
2
u
2
3
. Therefore,
1
2
∫
u
d
u
=
1
2
⋅
2
3
u
3
2
+
C
\frac{1}{2}\int \sqrt{u}\,du = \frac{1}{2}\cdot\frac{2}{3}u^{\frac{3}{2}} + C
2
1
∫
u
d
u
=
2
1
⋅
3
2
u
2
3
+
C
.
Substitute back in
t
t
t
:
Substitute back in terms of
t
t
t
.
\newline
Since
u
=
1
+
t
2
u = 1 + t^2
u
=
1
+
t
2
, we have
(
1
/
2
)
⋅
(
2
/
3
)
⋅
(
1
+
t
2
)
3
/
2
+
C
=
(
1
/
3
)
⋅
(
1
+
t
2
)
3
/
2
+
C
(1/2)\cdot(2/3)\cdot(1 + t^2)^{3/2} + C = (1/3)\cdot(1 + t^2)^{3/2} + C
(
1/2
)
⋅
(
2/3
)
⋅
(
1
+
t
2
)
3/2
+
C
=
(
1/3
)
⋅
(
1
+
t
2
)
3/2
+
C
.
Write final answer:
Write the final answer.
\newline
The indefinite integral of
t
1
+
t
2
t\sqrt{1+t^{2}}
t
1
+
t
2
with respect to
t
t
t
is
(
1
3
)
(
1
+
t
2
)
(
3
2
)
+
C
(\frac{1}{3})(1 + t^2)^{(\frac{3}{2})} + C
(
3
1
)
(
1
+
t
2
)
(
2
3
)
+
C
.
More problems from Find indefinite integrals using the substitution
Question
Evaluate the integral.
\newline
∫
−
x
4
−
3
x
d
x
\int-x 4^{-3 x} d x
∫
−
x
4
−
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
3
e
−
2
x
d
x
\int 6 x^{3} e^{-2 x} d x
∫
6
x
3
e
−
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
x
5
3
x
d
x
\int x 5^{3 x} d x
∫
x
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
e
2
x
d
x
\int-2 x e^{2 x} d x
∫
−
2
x
e
2
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
2
x
cos
(
−
2
x
)
d
x
\int-2 x \cos (-2 x) d x
∫
−
2
x
cos
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
x
cos
(
−
3
x
)
d
x
\int-x \cos (-3 x) d x
∫
−
x
cos
(
−
3
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
5
3
x
d
x
\int 6 x^{2} 5^{3 x} d x
∫
6
x
2
5
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
6
x
4
−
4
x
d
x
\int-6 x 4^{-4 x} d x
∫
−
6
x
4
−
4
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
6
x
2
2
3
x
d
x
\int 6 x^{2} 2^{3 x} d x
∫
6
x
2
2
3
x
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Question
Evaluate the integral.
\newline
∫
−
3
x
sin
(
−
2
x
)
d
x
\int-3 x \sin (-2 x) d x
∫
−
3
x
sin
(
−
2
x
)
d
x
\newline
Answer:
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant