Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(-oo)^(oo)(e^(x))/((1+e^(x)))dx

Evaluate the integral : ex(1+ex)dx \int_{-\infty}^{\infty} \frac{e^{x}}{\left(1+e^{x}\right)} d x

Full solution

Q. Evaluate the integral : ex(1+ex)dx \int_{-\infty}^{\infty} \frac{e^{x}}{\left(1+e^{x}\right)} d x
  1. Substitution and Simplification: Simplify the integral using a substitution.\newlineLet u=exu = e^x, then du=exdxdu = e^x dx, or dx=duudx = \frac{du}{u}.\newlineSubstitute into the integral:\newline()()ex(1+ex)dx=01(1+u)duu\int_{(-\infty)}^{(\infty)}\frac{e^{x}}{(1+e^{x})}dx = \int_{0}^{\infty}\frac{1}{(1+u)} \cdot \frac{du}{u}
  2. Evaluate Integral with New Variable: Evaluate the integral with the new variable.\newlineThe limits change as xx approaches -\infty, uu approaches 00, and as xx approaches \infty, uu approaches \infty.\newlineSo, 011+u(duu)=01u(1+u)du\int_{0}^{\infty}\frac{1}{1+u} \cdot \left(\frac{du}{u}\right) = \int_{0}^{\infty}\frac{1}{u(1+u)}du
  3. Decompose Fraction: Decompose the fraction.\newline1u(1+u)\frac{1}{u(1+u)} can be written as Au+B1+u\frac{A}{u} + \frac{B}{1+u}.\newlineSolving for AA and BB:\newline1=A(1+u)+Bu1 = A(1+u) + Bu\newlineSetting u=0u=0, A=1A = 1.\newlineSetting u=1u=-1, B=1B = -1 (which is incorrect, should be B=0B = 0).