Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve: ln(x)+5xdx\int \frac{\ln(x) + 5}{x} \, dx

Full solution

Q. Solve: ln(x)+5xdx\int \frac{\ln(x) + 5}{x} \, dx
  1. Recognize Split Integral: Recognize that the integral can be split into two separate integrals.\newlineI=(ln(x)+5)/xdxI = \int(\ln(x) + 5)/x \, dx\newlineI=ln(x)/xdx+5/xdxI = \int\ln(x)/x \, dx + \int5/x \, dx
  2. Integrate ln(x)/x\ln(x)/x: Integrate the first part ln(x)/xdx\int \ln(x)/x \, dx using the fact that the integral of ln(x)/x\ln(x)/x is a known integral.\newlineI1=ln(x)/xdx=(ln(x))2/2I_1 = \int \ln(x)/x \, dx = (\ln(x))^2/2
  3. Integrate 5/x5/x: Integrate the second part 5xdx\int \frac{5}{x} \, dx using the fact that the integral of 1/x1/x is lnx\ln|x|.I2=5xdx=5lnxI_2 = \int \frac{5}{x} \, dx = 5\ln|x|
  4. Combine Final Integral: Combine the results from Step 22 and Step 33 to get the final indefinite integral.\newlineI=I1+I2+CI = I_1 + I_2 + C\newlineI=(ln(x))22+5lnx+CI = \frac{(\ln(x))^2}{2} + 5\ln|x| + C