Apply Product-to-Sum Identity: We will use the product-to-sum identities to simplify the integral of the product of two cosines. The identity we will use is:cos(A)cos(B)=21[cos(A−B)+cos(A+B)]Let's apply this identity to our integral with A=9x and B=12x.
Simplify Using Identity: Using the product-to-sum identity, we get:∫cos(9x)cos(12x)dx=∫(21)[cos(9x−12x)+cos(9x+12x)]dxThis simplifies to:∫cos(9x)cos(12x)dx=(21)∫[cos(−3x)+cos(21x)]dx
Integrate Each Term: Now we integrate each term separately:(\frac{1}{2})\int \cos(-3x)\,dx + (\frac{1}{2})\int \cos(21x)\,dx\(\newlineSince the integral of \$\cos(kx)\) is \((\frac{1}{k})\sin(kx)\), we can integrate each term.
Integrate \(\cos(-3x)\): Integrating the first term gives us:\(\newline\)\((\frac{\(1\)}{\(2\)})\int \cos(\(-3\)x)\,dx = (\frac{\(1\)}{\(2\)})(\frac{\(1\)}{(\(-3\))})\sin(\(-3\)x) = -(\frac{\(1\)}{\(6\)})\sin(\(-3\)x)
Integrate \(\cos(21x)\): Integrating the second term gives us:\(\newline\)\(\frac{\(1\)}{\(2\)}\int\cos(\(21\)x)\,dx = \frac{\(1\)}{\(2\)}(\frac{\(1\)}{\(21\)})\sin(\(21\)x) = \frac{\(1\)}{\(42\)}\sin(\(21\)x)
Combine Terms: Combining both terms, we get the indefinite integral:\(\newline\)\(\int \cos(9x)\cos(12x)\,dx = -\frac{1}{6}\sin(-3x) + \frac{1}{42}\sin(21x) + C\)
Simplify First Term: We can simplify the first term by using the property that \(\sin(-\theta) = -\sin(\theta)\):\(-\left(\frac{1}{6}\right)\sin(-3x) = \left(\frac{1}{6}\right)\sin(3x)\) So the final answer is: \(\int \cos(9x)\cos(12x)\,dx = \left(\frac{1}{6}\right)\sin(3x) + \left(\frac{1}{42}\right)\sin(21x) + C\)
More problems from Find indefinite integrals using the substitution and by parts