Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


Evaluate the integral: int(-9)/(sqrt(36-16x^(2)))dx =

Evaluate the integral:93616x2dx \int \frac{-9}{\sqrt{36-16 x^{2}}} d x =

Full solution

Q. Evaluate the integral:93616x2dx \int \frac{-9}{\sqrt{36-16 x^{2}}} d x =
  1. Given Integral: We are given the integral: \newline93616x2dx\int \frac{-9}{\sqrt{36-16x^{2}}}dx\newlineTo solve this, we can recognize that this integral is in the form of an integral that results from a trigonometric substitution. Specifically, we can use the substitution x=34sin(θ)x = \frac{3}{4}\sin(\theta) to simplify the square root term.
  2. Trigonometric Substitution: First, let's make the substitution x=34sin(θ)x = \frac{3}{4}\sin(\theta). Then, dx=34cos(θ)d(θ)dx = \frac{3}{4}\cos(\theta)d(\theta). We also need to express the square root in terms of θ\theta. Substituting xx into the square root gives us 3616x2=3616(34)2sin2(θ)=369sin2(θ)\sqrt{36 - 16x^2} = \sqrt{36 - 16\left(\frac{3}{4}\right)^2\sin^2(\theta)} = \sqrt{36 - 9\sin^2(\theta)}.
  3. Simplify Square Root: Now, we simplify the square root: 369sin2(θ)=36(1sin2(θ))=36cos2(θ)=6cos(θ)\sqrt{36 - 9\sin^2(\theta)} = \sqrt{36(1 - \sin^2(\theta))} = \sqrt{36\cos^2(\theta)} = 6\cos(\theta). We can now substitute xx and dxdx into the integral and replace the square root with 6cos(θ)6\cos(\theta).
  4. Substitute xx and dxdx: The integral becomes: 96cos(θ)(34)cos(θ)d(θ)=(934)d(θ)=(274)d(θ)\int\frac{-9}{6\cos(\theta)} \cdot \left(\frac{3}{4}\right)\cos(\theta)d(\theta) = \int\left(-9 \cdot \frac{3}{4}\right)d(\theta) = \int\left(-\frac{27}{4}\right)d(\theta)
  5. Integrate: Integrating 274-\frac{27}{4} with respect to θ\theta gives us:\newline274θ+C-\frac{27}{4} \cdot \theta + C
  6. Back-Substitute for xx: Now we need to back-substitute to get the answer in terms of xx. From our substitution x=34sin(θ)x = \frac{3}{4}\sin(\theta), we can solve for θ\theta: θ=arcsin(4x3)\theta = \arcsin(\frac{4x}{3}).
  7. Final Answer: Substituting θ\theta back into our integral result gives us:\newline274arcsin(4x3)+C-\frac{27}{4} \cdot \arcsin\left(\frac{4x}{3}\right) + C\newlineThis is our final answer in terms of xx.