Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int(5^(x)dx)/(sqrt(5^(2x)+3*5^(x)+1))

5xdx52x+35x+1 \int \frac{5^{x} d x}{\sqrt{5^{2 x}+3 \cdot 5^{x}+1}}

Full solution

Q. 5xdx52x+35x+1 \int \frac{5^{x} d x}{\sqrt{5^{2 x}+3 \cdot 5^{x}+1}}
  1. Simplify Expression: Let's start by simplifying the expression under the square root in the denominator. We can factor the expression as a perfect square trinomial.\newline52x+35x+1=(5x+1)2\sqrt{5^{2x} + 3\cdot 5^{x} + 1} = \sqrt{(5^{x} + 1)^2}
  2. Rewrite Integral: Now, we rewrite the integral using the simplified expression under the square root. 5xdx52x+35x+1=5xdx5x+1\int\frac{5^{x}\,dx}{\sqrt{5^{2x}+3\cdot 5^{x}+1}} = \int\frac{5^{x}\,dx}{5^{x} + 1}
  3. Perform Substitution: We can now perform a substitution to simplify the integral further. Let u=5x+1u = 5^{x} + 1. Then, we need to find dudu in terms of dxdx. To find dudu, we differentiate uu with respect to xx. dudx=ddx(5x+1)=ln(5)5x\frac{du}{dx} = \frac{d}{dx}(5^{x} + 1) = \ln(5)\cdot5^{x} So, du=ln(5)5xdxdu = \ln(5)\cdot5^{x}dx
  4. Express dxdx in Terms: We can now express dxdx in terms of dudu and 5x5^{x}.
    dx=duln(5)5xdx = \frac{du}{\ln(5)\cdot 5^{x}}
    Substitute this expression for dxdx and uu into the integral.
    5xdx5x+1=5xln(5)5xduu\int \frac{5^{x}dx}{5^{x} + 1} = \int \frac{5^{x}}{\ln(5)\cdot 5^{x}}\frac{du}{u}
  5. Cancel Terms: Simplify the integral by canceling out the 5x5^{x} terms.\newline5xln(5)5xduu\int\frac{5^{x}}{\ln(5)\cdot5^{x}}\,\frac{du}{u} = 1ln(5)duu\int\frac{1}{\ln(5)}\,\frac{du}{u}
  6. Integrate 1/u1/u: Now we can integrate 1/u1/u with respect to uu.
    (1/(ln(5))du/u)=(1/ln(5))(1/udu)\int(1/(\ln(5))\,du/u) = (1/\ln(5)) \cdot \int(1/u \,du)
    The integral of 1/u1/u with respect to uu is lnu\ln|u|.
  7. Perform Integration: Perform the integration to find the indefinite integral.\newline(1ln(5))1udu=(1ln(5))lnu+C(\frac{1}{\ln(5)}) \int \frac{1}{u} \, du = (\frac{1}{\ln(5)}) \ln|u| + C
  8. Substitute Back: Substitute back the original expression for uu to get the final answer.(1ln(5))lnu+C=(1ln(5))ln5(x)+1+C\left(\frac{1}{\ln(5)}\right) * \ln|u| + C = \left(\frac{1}{\ln(5)}\right) * \ln|5^{(x)} + 1| + C